
Reusing Software Design Expertise

Kevin L. Mills

INFT 960 SPRING 1994
EXPERT DATABASE SYSTEMS

School of Information Technology and Engineering
George Mason University

I. Introduction

The development of software, especially complex, real-time

software or general-purpose software intended for wide

applicability, consumes a substantial amount of time and money.

For this reason, the software industry adopted, subsequent to a

NATO conference in 1969 where Doug McIroy first introduced the

concept, a goal of reusing software components. Over the two

and one-half decades since, software reuse has increased in some

situations, but most students of the state of

software-development practice agree that McIroy’s original

vision has yet to be achieved and that increased reuse of

software components is possible and remains a goal worth

pursuing. Over the same twenty-five years, students of software

engineering have come to understand that all of software

development involves reuse in some form. Even where software is

not reused, knowledge about a problem domain or about software

design or about programming constructs is most certainly reused

-- drawn from books or from the heads of experienced analysts,

designers, and programmers.

The present paper addresses reuse of design knowledge as

applied to development of real-time, concurrent software. The

thesis is that design knowledge (from experienced designers and

from textbook design methods) can be codified as knowledge in a

design assistant, and that such a design assistant can be

coupled to a domain analysis and modeling technique to improve

the ability of inexperienced designers to produce competent,

concurrent designs for real-time software. The approach

advocated in this paper is unique in several facets. First, the

proposed approach distills heuristics from several real-time,

design methods into a set of expert rules. This approach has

previously only been tried with transform analysis from

structured analysis and design. Second, the proposed approach

4

couples the design assistant rules to a domain modeling

technique. The result is a generator that can help to produce

specific designs from domain models. Most other domain modeling

approaches either: 1) attempt to match domain model outputs to

preexisting designs or 2) to transform domain models to software

components. Third, the proposed approach can be used with any

domain modeling technique, or with any object-oriented analysis

method, that can represent the analysis as a network of objects

(possibly connected to external devices) that communicate by

passing messages. As a result of this trait, the proposed

approach can be applied to assist in generating concurrent

designs from any object-oriented analysis method. Fourth, the

proposed approach can help to identify essential information

that the analysis failed to supply, can elicit the missing

information, and then can facilitate the retention of that

information for future use. Most other approaches based on

domain analysis and modeling require that the analyst acquire

all information needed for subsequent transformations before

such transformations are conducted. Fifth, the proposed

approach produces a representation of a concurrent design that

is independent of any specific purpose. With appropriate tools,

the resulting design can be represented graphically or printed,

can be analyzed for performance characteristics, can be

simulated to assess the function and performance of the design,

or can be translated, either automatically or by hand, into an

implementation. Most other approaches result in specific

representations intended for specific purposes.

A strategy underlying the reuse of design knowledge, as

proposed in this paper, appears in Section IV, Automating The

Reuse Of Design Knowledge. In addition to a strategy, Section

IV presents several general and specific goals that motivate the

proposed approach. Following this discussion of goals, the

section identifies specific research problems that must be

5

solved in order to achieve the goals. The section closes with a

consideration of the benefits expected to accrue from achieving

the goals.

To provide a better technical understanding of the proposed

approach, Section V contains a small example based on a simple,

real-time application. The example defines and demonstrates

selected design heuristics for structuring (e.g., active-object

identification, passive-object assignment, and active-object

cohesion) and for defining task interfaces (e.g., identifying

inter-task messages, interrupts, timers, signals, and data).

Appendix B contains output from a CLIPS [GIAR93, GIAR89]

implementation of the example. Since the example uses only a

subset of the possible heuristics, Appendix A proposes a more

complete set of design rules. Section V closes with a

consideration of other issues that should be addressed for a

complete treatment of the expertise needed to design concurrent

software.

Prior to presenting the main points of the paper, covered in

Sections IV and V, two sets of background material are included.

Section II, Software Reuse, describes briefly the motivation

behind software reuse and the kinds of reuse that can occur

during software develop. A more extensive discussion discloses

the range of problems that inhibit successful reuse. The

section closes with a review of four recognized approaches to

reuse: 1) mass-market software, 2) software design methods, 3)

automated programming, and 4) domain analysis and modeling.

Section III, Related Research, examines some specific research

activities that address the reuse of software development

knowledge.

A concluding section (VI) provides a summary of the ideas

advanced in this paper. Software design knowledge, applicable

to concurrent, real-time systems, can be codified in an expert

system and then coupled to a domain modeling technique in order

6

to assist in the generation of concurrent designs for specific

systems within a domain. That same expert system can also

support generation of concurrent designs from object-oriented

analyses. The example included within this paper demonstrates

the feasibility of the proposed approach. The paper also

outlines a series of research problems that must be solved to

achieve the goals and benefits that appear possible.

II. Software Reuse

Software production comprises one of the most dynamic growth

industries of the 1990’s, with expansion expected into the

foreseeable future; however, the productivity of software

developers is not particularly great, nor is the quality of

software products particularly high.

Software production is a rapidly expanding multibillion dollar
business. The products coming from this business, however, are
far from satisfactory. Thus, around 1970, the term software
crisis emerged. Because a crisis is something that is overcome
after a limited period, the term is not used anymore; however,
the problems are worse today, at least from the user’s point of
view. [BIBE91, p. 405]

Some inherent properties of software contribute to the low

productivity and poor quality exhibited by the software

industry. [BROO87] Software products are constructed from

complex, custom components; such components do not scale up

from a repetition of small elements in larger sizes in the

manner that electronic parts can. Software products are

expected to conform to the interfaces of existing human

processes and systems, no matter how complex such interfaces may

be. All successful software must accommodate change in order to

meet new requirements and to adapt to new environments. And

software remains invisible, and cannot be visualized. Since

these inherent properties of software seem to impose limits on

the abilities of developers to produce high-quality software at

7

cost-effective rates, corporations seek to maximize their

investment in software development by striving to reuse software

as much as possible.

Successful reuse of software components leads to increased

productivity among software developers, to improved quality in

the delivered products, and to more cost-effective software

maintenance. [CAV89] Such improvements could prove valuable to

organizations that depend on computer software. Boehm estimates

that by 1995 a 20% improvement in software productivity will be

worth $90 billion worldwide. [BOEH87] This estimate, made in

1987, could prove low as society’s major sectors - commercial,

government, and military - become increasingly reliant on

software. And such reliance falls most heavily on software that

already exists. Most estimates place the percentage of software

development resources spent on maintenance (perfective,

adaptive, and corrective) between 60-80%, and 75% of that effort

goes to perfective and adaptive maintenance. [FISC92, BALZ83]

There is ample evidence to suspect that reuse can become a

normal part of software development practice. For example, a

study of business software systems at Raytheon Missile Systems

Division found that 60% of all designs and code (in their COBOL

programs) were redundant and could be reused. [LANG84] Another

study of California commercial banking and insurance

applications found that approximately 75% of the software

functions were common to more than one program, and concluded

that less than 15% of the code written for such applications is

unique, novel, or specific; the remaining 85% appeared to be

generic. [JONE84] While reuse targets of 60-85% appear feasible,

actual results lag. For example, Matsumoto reported in 1984

that 50% of the lines of code delivered in products from the

Toshiba software factory were reused; [MATSU84] and a 1989 study

of NASA projects found software reuse rates of only 32%. [CURT89]

8

Although the reuse of software components trails what might

be achieved, reuse of components alone does not reveal the

entire picture about reuse in software development. Prieto-Diaz

defines two levels of software reuse: 1) ideas and knowledge and

2) artifacts and components. [PRIE87a] Whenever a programmer

creates software he is reusing knowledge that he already

possesses, whether through training, education, experience, or a

combination of these. [CURT89] On a larger scale, programming

projects reuse a massive amount of knowledge, including software

development process knowledge. Thus, initiatives such as that

of the Software Engineering Institute to document, refine, and

promote improved software development processes provide examples

of reuse of ideas and knowledge to develop software. Probably

the most productive reuse of knowledge to develop software

obtains today from reuse of trained software development

personnel. [MEYE87]

Other examples of knowledge reuse for software development

abound. A huge commercial market exists for books describing

data structures and algorithms, and for teaching about the

nature and application of those algorithms and data structures.

[STAN84] Another example of knowledge reuse is adoption of and

adherence to technical standards and conventions. [RICE89] Going

even further toward tangible knowledge, buying commercial

software, including so-called 4GLs, can be viewed as reuse of

knowledge and ideas. [BOEH87] Brooks describes a burgeoning, mass

market for software programs that can be applied to specific

tasks, and he proposes to:

equip the computer-naive intellectual workers ... with
personal computers and good ... writing, drawing,
file, and spreadsheet programs and then [to] turn them
loose. The same strategy, carried out with
generalized mathematical and statistical packages and
some simple programming capabilities, will also work
for ... laboratory scientists. [BROO87, p. 16-17]

9

Introduction of commercial software products blurs the line

between knowledge and artifacts. Since software artifacts and

components embody ideas and knowledge, the reuse levels

introduced by Prieto-Diaz perhaps have more to do with

representation: knowledge and ideas being intangible until they

are represented; once represented in human-readable form, they

become artifacts, and when they reach a machine-executable form

they can be considered software components. Between these two

extremes of artifacts and components, expert systems permit

knowledge to be captured, represented, and used to assist human

developers to perform the tasks necessary to produce software.

The key point of the preceding discussion is that software

developers need to reuse more than code. (In fact, it is

difficult to define reusable components apart from a context;

and a context can include the requirements, a specification, a

system architecture, another program or software subsystem, and

a test plan and test cases. [CALD91]) The reuse of components

always includes the reuse of knowledge; and knowledge is always

required to reuse components.

The software development industry has achieved moderate

success in the reuse of knowledge (through books, training, and

college curricula) and has shown recent signs of success in the

reuse of mass-market software applications for word-processing,

for spreadsheets, for drawing, and for mathematical analysis.

In the areas of specialized software, for custom applications

and particularly for real-time processing, the ability of

developers to reuse software (and even knowledge) is less

evident. The reasons for this lack of success are many.

In a previous paper, the author divides reuse problems into

four categories: 1) technical, 2) cognitive, 3) management, and

4) economic. [MILL92] For the reader already familiar with

software reuse inhibitors, Table II-1 gives a list of the

problems allocated to each of the four categories. For other

10

readers, each of the problems indicated in Table II-1 is

discussed briefly below, beginning with the hard technical

problems.

A key inhibitor to software reuse is the scant population of

reusable components. Obtaining qualified candidates for reuse

is difficult, and adapting submitted code to a reusable form is

expensive. [CAVA89] Software is not often designed for reuse, and

even when so designed, writing reusable code is difficult.

[RAMA86, MEYE87] Code can be too specialized and often includes

too many representational details. [STAN84] For example,

Biggerstaff points out that:

Table II-1. Software Reuse Inhibitors Classified As Technical, Cognitive, Management, and Economic

Technical Cognitive Management Economic

Population

Classification

Location and Retrieval

Evaluation

Adaptation

Granularity

Composition

Documentation and
 Representation

Requirements
 Specification

Programmer Acceptance

Novice Programmer

Force-fit

Generalization

Commitment

Measurment

Intellectual Property
 Protection

Marketing

Return-On-Investment

[m]odules become less ... reusable the more specific
they become because it is more ... difficult to find
an exact match of detailed specifics. Modules
subtlely encode ... specific information about a
variety of things: operating systems, run-time
library, hardware equipment, ... data packaging,
interface packaging, and so forth. [BIGG87, p. 43]

11

And yet, separating a reusable software component from a

specific context is difficult. [CALD91]

Another reason for the paucity of reusable components is a

lack of producers. Most software development occurs on a

project basis; yet projects will never be an appropriate place

to create reusable software. Projects are hindered by a

deadline focus, lack wide domain knowledge, and lack a reuse

perspective. [CALD91] Production of reusable components is also

inhibited by lack of accepted frameworks or system architectures

into which components can be integrated. [WIRF90]

Assuming that a large population of reusable components

exists, other problems elevate in significance. One such issue

is classification. By what attributes should reusable

components be described and classified to enable effective

search and retrieval by potential users? Defining an approach

that enables discrimination between very similar components is a

particularly difficult classification problem. [PRIE87] Even if

an acceptable classification is posited, locating and retrieving

components would not be trivial. The search space could be

immense. Helping a programmer retrieve a group of reuse

candidates seems achievable, but allowing a programmer to find

the closest match against stated requirements appears much more

difficult. [RAMA86]

With a candidate set of reusable components in hand, the

evaluation problem looms. There are two facets to this problem:

how close to the requirements does each candidate match and how

easily reusable is each candidate? In many cases, reusability

relates not only to the component itself, but also to the degree

of reuse experience that the programmer possesses. In one

study, by Woodfield, 51 developers (25 from industry and 26 from

a university) were given 21 software components and asked to

determine if each component could be reused to satisfy a

particular specification. [WOOD87] The study resulted in four

12

findings. First, programmers untrained in reuse could not

evaluate the ability of a reuse candidate to satisfy

implementation criteria. Second, programmers untrained in reuse

are influenced by some issues that are unimportant and are not

influenced by some issues that are important. Third, no groups

of programmers could be identified as performing significantly

better or worse in judging reusability. Finally, if a

programmer judged that the work needed to reuse code was less

than 70% of the effort required to build the code from scratch,

then the component was chosen for reuse.

Having successfully selected a reusable component,

programmers typically must overcome the adaptation problem. A

programmer must understand a component in order to modify it.

[CURT89] Depending on the match between the programmer’s need and

the reuse component, the software might require conversion to a

different operating system or programming language or hardware

environment. In addition, the component interfaces might not

match the interfaces expected. [NOVA92] When required to adapt

reusable code, the tendency among programmers it to copy and

modify. [CAVA89] To avoid copying, a number of problems must be

solved. For example, who owns and has responsibility for the

component? How are the components maintained and synchronized

with the release of products that incorporate them? [LENZ87] How

can reusable code be kept available in a form that works on

multiple computing platforms? [CAVA89]

Selby investigated reuse at the National Aeronautics and

Space Administration (NASA), examining 25 software systems

ranging in size from 3,000 to 112,000 lines of code, and found

adaptation to be an important factor affecting reuse. [SELB89]

He found that modules that tended to be reused without revision

had: 1) fewer calls to other modules per lines of code, 2)

simpler interfaces, 3) less interaction with human users, and 4)

higher ratios of comments to lines of code. Such modules were

13

generally small; thus, did not compose a significant part of a

typical software development effort.

Selby’s investigation introduces the granularity problem

identified by Biggerstaff. [BIGG87] Smaller, simpler components

tend to be reused more because the population is large and

evaluation and adaptation are easy, though finding smaller

components can be hard and the payoff is usually low. Larger

components tend to be reused less often because the population

is low and evaluation and adaptation are hard, though finding

such components is easy and the payoff can be high. Granularity

of reusable components influences the composability of the

components into a whole.

To be successful, reuse schemes must provide "...robust

mechanisms to insure reliable and meaningful parts composition."

[RICE89, p. 125] Two different approaches exist to compose systems

from components. One approach relies on standards for

communication and data interchange. [JONE84] In this model,

reusable components, which are assumed to be fairly large, are

connected together via communication channels, and data is

exchanged between components in a standard format. The second

approach relies on a standard architecture into which components

can be linked using a range of different mechanisms. [WIRF90,

JONE84]

Two remaining technical issues merit mention: the

documentation and representation problem and the requirements

specification problem. Documentation requirements for reusable

components are at least as rigorous as for any other software,

probably more rigorous. The documentation must facilitate the

understanding needed to evaluate and adapt components; for

large, reusable components this is critically important, but

very difficult. Documentation must include a specification, a

design, a design rationale, constraints on reusing the

component, and test cases. [CALD91] How should this information

14

be represented? Another difficulty stems from user requirements

statements which trigger software reuse. Users often express

their requirements in a form that can disguise cues that might

otherwise trigger recognition of appropriate reuse. [CURT89]

Aside from these nine technical problems, reuse is inhibited

by human nature as well. [MEYE87, CURT89, SAGE90] Experienced

programmers tend to view their work as creative, and they

interpret reuse as routine application of old technology.

Programmers also possess a certain pride of authorship and

believe that they can do the job better than others.

Programmers tend to distrust software developed by those they do

not know. Also, the work required to understand the code of

others is not normally viewed by programmers as interesting.

Programmers tend to believe that they will not get credit for

work that incorporates large amounts of reusable code.

Novice programmers deserve special discussion. [CURT89] The

short-term memory of humans can handle about seven (plus or

minus two) concepts at one time. To overcome this limitation,

experienced programmers chunk complex concepts together under

labels, and then the mind can process seven labels. The labels

refer to information stored in hierarchical, semantic networks

in a programmer’s long-term memory. Expert programmers

effectively encode new information and map, compare, and analyze

that information against the broad base of knowledge that they

already possess. As a result, novice programmers, who might

benefit most from reusable software, are not as equipped to

identify, analyze, and evaluate candidates for reuse as are

experienced programmers.

While programming experience provides some advantages

regarding software reuse, other aspects of experience loom as

impediments. For example, programmers will often try to force

the application requirements to fit a structure or pattern for

which they know a solution, even if the solution fails to

15

satisfy some of the original specifications. [CURT89] As another

example, programmers might be required to abstract general

concepts out of specific implementations to form a reusable

component that applies across multiple domains. When a

programmer possesses too much experience in a given domain,

generalizing components outside of that domain can be difficult.

[MEYE87, CURT89]

Aside from programmers, managers also play a role in software

reuse; unfortunately, reuse often suffers from a lack of

management commitment. Building a library of reusable

components takes time and costs money. Managers can seldom

identify the potential for a good return on the required

expense. Even when managers are inclined to establish a

program, and to evaluate the results as time goes by, the

measurement problem interferes. [CAVA89] What measures will

demonstrate increased productivity and improved quality? If

measures can be defined, then how will the necessary data be

collected?

On a corporate scale, management issues are perceived in

economic terms. If a company delivers software that is too

general and too reusable, then management might fear losing the

usual follow-on business of maintenance and enhancements. [MEYE87]

In addition, individual programmers or small companies that

might choose to produce reusable software components have no

sure means of collecting for their efforts because their code

can be easily copied and distributed. [COX92] Even if

intellectual property rights could be protected, how can

reusable components be marketed?

Despite these many problems, the software industry shows

steady progress in reusing both components and knowledge, and

additional prospects can be expected as the result of several

research directions. One of the most obvious areas of progress

appears in the mass markets for software running under de facto

16

standard operating systems (and in some cases hardware

components as well). Over the past decade, two huge markets for

software blossomed: 1) a market for scientific and engineering

workstations (pioneered by SUN) and 2) a market for office and

home computing (pioneered by IBM, Intel, and Microsoft). In

each of these markets, certain de facto standards developed for

operating systems (UNIX in one and DOS and Windows in the

other), for user interfaces (based on graphical windows), and

for certain hardware capabilities (networking attachments and

hard disk capacities). As a result of these markets,

substantial investments have been made throughout the software

industry. A number of user-interface frameworks (for example,

X-windows and MS-Windows), data communications packages (e.g.,

TCP/IP, DCE, and DME), and database management systems have been

constructed to fit within the structures provided by these de

facto standards. In addition, a wide range of applications

(word processors, spreadsheets, drawing programs, and

mathematical and statistical analysis packages) are available in

the market to support the needs of a growing population of

computer users. Already, the seeds of a new market for

multimedia computing can be seen.

While this mass market provides reusable software for many

people, the range of applications remains limited to those that

can support office workers, students, engineers, and laboratory

scientists. No such mass market exists for real-time software

in applications, such as home appliance control, aircraft

command and control, automobile monitoring and control, factory

automation, process control, medical monitoring and measurement,

retail shopping automation, telecommunications processing, and

so on. The state of affairs in the marketplace for real-time

software finds no consensus on operating systems (or even on the

need for an operating system per se), on hardware architectures,

on software architectures, or even on whether high-level

17

languages provide a suitable basis for building real-time

systems. This lack of a mass market for real-time software

exists despite the fact that the amount of money spent on such

software probably exceeds that spent on more conventional

applications, and also despite the fact that such systems have

an increasing potential to affect the health and safety of

unwitting users (that is, people who rely on the software

without necessarily being aware that it exists).

Lacking a mass market for reusable components, reuse in

real-time software takes other forms. Over the past fifteen

years, analysis and design methods have been adapted for use in

real-time software (several of these methods are described in

Section III). These methods generally provide: 1) a notation

for specifying requirements, 2) a notation for representing

designs, 3) a process to follow to analyze user requirements

statements and to produce designs, and 4) heuristics for making

specification and design decisions. The latter three of these

elements represent knowledge about analysis and design. Manual,

software-design methods make this knowledge available for reuse

by writing it down (usually in a textbook form). When a

designer applies one of these methods to a specific problem, he

then reuses the knowledge embodied in the method. In some

cases, design methods are supported by so-called computer-aided

software engineering (CASE) tools that help a user to represent

the analysis and design in the proper notation. Usually the

CASE tool can check for consistency and completeness between the

two representations. These tools provide no other assistance

for the process of specifying the problem or for designing a

solution.

Some research approaches attempt to further automate the

design process. These approaches (specific examples are cited

and explained in Section III) generally fall into three

categories: 1) automatic programming, 2) end-user programming,

18

and 3) design assistants. Automatic programming approaches

attempt to move from a formal statement of user requirements to

working software without requiring additional human

intervention. To accomplish such a goal, many kinds and levels

of knowledge must be captured, represented, and used. In the

most ambitious automatic programming systems, this knowledge can

include domain-specific knowledge, programming knowledge,

mathematical knowledge, hardware knowledge, and even common

sense. In most automatic programming systems, the problem

specification really turns out to be a statement of a solution

method. [BROO87] There are exceptions when the problem domain

can be characterized by a small number of parameters, where many

known solutions can populate a library of alternatives, and

where extensive analysis yields specific rules for selecting a

solution for the given set of problem parameters.

Rather than creating a solution for users, end-user

programming systems interact with users to create solutions to

application problems. As with automatic programming approaches,

the goal is to move from user needs to working solutions without

great expense and time; however, in end-user programming

approaches, human intervention is expected as the solution

develops. For example, the user need not write her needs in a

formal language, but might instead converse with an expert

assistant to help define her problem, to tentatively select a

strategy for solution, to exercise the solution, and then to

correct any problems that occur. This mode of operation tends

to limit these approaches to applications that are interactive,

that tolerate ambiguity and error, and that are not

time-critical.

While automatic and end-user programming approaches attempt

to improve productivity and user satisfaction by removing the

analyst, designer, and programmer from the development process,

automated design assistants attempt to represent knowledge about

19

design strategies in some form, often in an expert system, that

can assist a human designer to make the many decisions needed to

transform a requirements specification into an architectural

design. The power of a design assistant increases with an

increasingly rich knowledge-base. Most design assistants

reported to date attempt to apply rules (such as transform

analysis from structured design) to transform data flow diagrams

(produced by structured analysis) into structure charts that

represent a sequential design. The potential exists to create

concurrent designs using expert assistants that represent the

richer knowledge now only embedded in manual, design methods for

real-time systems.

The most powerful contribution by expert systems will
surely be to put at the services of the inexperienced
programmer the experience and accumulated wisdom of
the best programmers. This is no small contribution.
The gap between the best software engineering practice
and the average practice is very wide - perhaps wider
than in any other engineering discipline. A tool that
disseminates good practice would be important.
[BROO87, p. 15]

No currently available design assistant encapsulates the best

engineering practice for real-time software design. Section IV

presents a strategy for achieving this objective in concert with

domain analysis and modeling.

Domain analysis attempts to generalize all systems in an

application domain, that is, to produce a domain model that

transcends specific applications. [PRIE87a] Although no accepted

definition for representing a domain model exists, remarkable

similarity can be seen among researchers regarding the content

of such a model. Jacobsen and Lindstrom describe a domain model

as the set of domain objects (including their attributes and

functions) and the relationships between them. [JACO91] This

description mirrors that of other domain analysis and modeling

researchers. [ARAN89, GOMA92, ISCO88, PRIE87a] Gomaa and Iscoe each

20

add to their description of a domain model the set of rules that

can be used to compose, generalize, and specialize domain

objects. The disagreement among researchers regarding a

representational form for a domain model seems to be motivated

by differences in the use that each intends for the model. Some

researchers, such as Gomaa and Iscoe, intend to use the domain

model as input to any of a number of transformational program

generators. Others, such as Prieto-Diaz, aim only to facilitate

reuse of domain concepts; here, the domain model is represented

as a specific, unique language that can be used by human

analysts to create specifications for individual systems within

the domain. Still others, such as Arango, want to represent

information that will allow a domain model to trigger specific

instances of reusable components. Different than all of these

approaches, Jacobson and Linstrom prefer a graph representation

of the domain because they aim to build a model that facilitates

reasoning about system modifications.

In summary, reuse of development knowledge and software

components can potentially increase the productivity of software

developers and the quality of software products. Although this

potential was first recognized twenty-five years ago, a host of

technical, human, and economic problems have limited software

reuse to date. During the past decade, the emergence of a mass

market for office, home, scientific, and engineering

applications has accelerated software reuse; however, in the

larger realm of real-time and custom software applications no

such acceleration has occurred. A number of research approaches

propose to improve this situation. Some of these approaches are

described and critiqued in the next section.

21

III. Related Research

As practiced today, software analysis and design rely heavily

on reusing design knowledge represented within textbooks,

university courses, and industry training programs. A number of

such analysis and design methods are surveyed in the literature.

[GOMA93a, YAU86] Due to the popularity of certain of these

methods, some researchers propose means for automating them.

Other researchers envision eliminating design methods altogether

either by automatically transforming problem specifications to

implementations, or by helping users to interactively develop

implementations without an analyst. [LOWR92, SIMO86] A main thrust

of current research regarding software reuse applies a range of

techniques to generate or adapt software from reusable models of

application domains. These research efforts are reviewed below.

Software Design Methods

The earliest, effective analysis and design method combined

structured analysis [DEMA78] with structured design [YOUR79].

Structured analysis (SA) provides a simple, yet effective,

method for representing and comprehending a range of data

processing systems using a process, or transform-oriented, view

of a software problem. In SA, a system is seen as a series of

steps that transform incoming data into outgoing data. Each

step is represented by a circle (called a transform) that

performs some processing (described in pseudo-code) on incoming

data (denoted by directed arcs) to produce system outputs (also

noted by directed arcs). Devices, processes, and people outside

of the system are denoted by rectangles, while data repositories

within the system are denoted by two, parallel lines. A

complete set of transforms, directed arcs, parallel lines and

rectangles composing a SA system description is called a data

22

flow diagram (DFD). A complete, SA specification can consist of

a hierarchical set of DFDs because each transform at one level

can be described by another DFD at the next lower level of

detail. The result of applying structured analysis is a set of

diagrams representing the data flow into a system, among a set

of transforms within the system, and then out of the system.

Given a structured analysis specification for a system, a

software designer must create a plan for a program that

satisfies the specification and that can be coded by

programmers. The most accepted method for creating such a plan,

when the resulting program is to be sequential, is called

structured design (SD). [YOUR79] Structured design identifies

desirable properties of a sequential, program design, provides a

set of heuristics for transforming a SA specification into such

a design, and also gives a notation for representing the design.

The software properties of concern in SD include: 1) module

size (between 10 and 100 statements), 2) span of control (seven,

plus or minus two), 3) fan-in (maximize within other constraints

such as high module cohesion), and 4) scope of effect/scope of

control (for any given decision, the scope of effect should be a

subset of the scope of control of the module containing the

decision).

In addition to a set of desirable goals, SD provides a mean

to transform a DFD into a design. Before considering the

transformation process, a short summary of the design notation

is in order. A structured design is a hierarchical, module,

structure chart. Each module is represented by a rectangle,

with unconditional flow of control between a superior and

subordinate module represented by a directed arc. Conditional

flow of control is shown by augmenting the directed arc with a

diamond. Parameter flows (both in and out) and control flag

flows (both in and out) between modules are represented by

directed arcs that parallel the control flow arcs. The tail of

23

parameter flow arrows possess hollow circles, while the tail of

control flag flow arrows possess solid circles.

Given a DFD, the process of creating a structure chart

requires four steps. First, the afferent (incoming) and

efferent (outgoing) data transforms are identified. The effect

of this analysis is to separate the DFD into branches of three

kinds: input, processing, and output. Next, a first-level

factoring is performed that creates a top-level (or main) module

and a second-level module for each branch identified previously.

The third step is to factor each branch; separate, factoring

strategies are recommended for each type of branch. The final

step, requires the designer to deal with any departures from the

usual. For example, some branches may contain a mix of afferent

and efferent transforms. As a final set a suggestions,

structured design includes common verbs that can be used to

assign module names.

Although structured analysis and design provide useful

notations and approaches for designing many standard, software

applications that admit sequential solutions, the wider range of

software problems, including real-time systems and concurrent

processing, can benefit from additional techniques. For this

reason, researchers have developed real-time variants of

structured analysis and design.

Real-Time Structured Analysis (RTSA) augments SA with

additional semantics and notations to model events and control.

[WARD85] The primary improvements made by RTSA include: control

transforms and event flows. Control transforms, represented by

circles enclosed in dashed lines, are used to encapsulate state

transition diagrams (STDs) that order asynchronous events

flowing into a system to control the processing and outputs of

the system. In place of psuedo-code, each control transform in

a RTSA specification is supplemented by a STD that describes the

control functions of the transform. All inputs to and outputs

24

from RTSA control transforms are in the form of event flows,

represented by dashed, directed arcs. Event flows can be

further classified as triggers or enable/disable switches.

Triggers represent events flowing into a control transform, or

cause a data transform to be activated for one execution of the

processing represented by the transform. Enable/disable events

turn a data transform on or off. Once a data transform is

enabled, the processing contained therein continues until the

transform is disabled.

Given a RTSA specification, methods are needed for a designer

to create a plan for a concurrent, software solution. Several

researchers describe such methods. For example, Gomaa proposes

a Design Approach for Real-Time Systems (DARTS). [GOMA84, GOMA93a]

 DARTS includes a set of heuristics for decomposing a DFD

(augmented with control transforms and events, and thus called a

control and DFD, or C/DFD) into a set of concurrent tasks.

Further heuristics address the problem of inter-task message

communication and synchronization between tasks and shared

modules. Once tasks and shared modules are identified, DARTS

relies on SD for designing the sequential processing required

within each task. In his later writings about DARTS, Gomaa also

describes a notation for representing the concurrent design. In

DARTS, parallelograms denote tasks and modules are represented

with rectangles. Each operation encapsulated within a module is

represented by a small rectangle protruding from the larger

module rectangle. DARTS also includes graphic notations for

representing a range of inter-task messaging mechanisms,

including: loosely-coupled messages into queues (or priority

queues), tightly-coupled messages with and without reply, and

event signals.

Nielsen and Shumate propose a similar approach for designing

real-time systems (with Ada) from DFDs. [NIEL88, NIEL87] Nielsen

and Shumate make two, restricting assumptions not made by Gomaa:

25

1) the system specification uses only DFDs (that is, uses SA)

and 2) the target programming language is Ada. These

assumptions affect the number and form of heuristics, as

recommended by Nielsen and Shumate, needed to transform a DFD

specification into a concurrent design. Overall, the heuristics

proposed by Nielsen and Shumate can be considered a subset of

the more comprehensive heuristics recommended by Gomaa.

The analysis and design methods discussed to this point are

based on process-oriented techniques. Other methods, more

recently conceived, rely on object-oriented techniques. One

early attempt to blend object-oriented approaches with real-time

structured analysis (RTSA) resulted in a Concurrent Object-Based

Real-Time Analysis (COBRA) method. [GOM93a] COBRA augments RTSA

by adding the ability to represent objects (in addition to data

and control transforms) on C/DFDs. An object can be discerned

on a COBRA diagram as a circle labeled with a noun (transforms

are labeled with verbs). A circle outlined in a solid line

denotes a data, algorithm or device object, while a dashed

outline identifies a control object. For data, algorithm or

device objects, incoming, directed arcs identify the operations

supported by the object. Beyond these object-oriented

additions, COBRA provides a technique called behavioral-scenario

analysis to help the analyst create an effective COBRA

specification.

Gomaa augments his COBRA technique with an adaptation of

DARTS, now called the COncurrent Design Approach for Real-Time

Systems (CODARTS), that shows a designer how to create a

concurrent design and a module structure from a COBRA

specification. [GOMA93a] In addition, CODARTS supports

distributed designs by giving heuristics for decomposing a

system into loosely-coupled subsystems that can be distributed.

While the subsystem decomposition heuristics are new, CODARTS

26

builds on the same extensive set of task and module structuring

criteria first proposed for DARTS.

Another concurrent analysis and design approach that builds

on object-oriented modeling concepts is Entity-Life Modeling

(ELM) proposed by Sanden. [SAND94, SAND89, SAND89a] ELM models a

problem with two basic components: entities with life (called

threads) and resources (called objects). This modeling approach

results in a natural implementation of threads as Ada tasks and

objects as Ada modules. Threads are identified by analyzing a

problem in search of entities that have life. Objects are

uncovered by looking for resources that are used by the

entities. ELM avoids the need for heuristics to map from

analysis to a concurrent design because the analysis itself

produces a concurrent specification. In addition, Sanden

believes that ELM results in fewer processes when compared with

alternative approaches (such as those described above and the

object-oriented approaches described below). As currently

defined, ELM requires an execution environment where tasks share

an address space. This limitation restricts ELM to

non-distributed applications.

While the advent of Ada and growth in real-time applications

encouraged research into analysis and design methods for

concurrent software, research into abstract-data-type theory,

and the evolution of related, programming languages, spurred the

development of analysis and design approaches based on an

object-orientation. The first such approach, object-oriented

development (OOD) is reported in the literature by Booch. [BOOC91,

BOOC86] Booch describes a design approach that structures a

system into objects (rather than the operations that had been

used up to that time in DFDs). From that point, each object is

augmented with the operations supported, the attributes

represented, and the relationships to other objects. Booch’s

approach improves the conceptual model of systems by replacing

27

the use of loose functions with objects that encapsulate

functions. Although Booch’s target domains were primarily

real-time systems, OOD provides little guidance for mapping an

object-oriented design to concurrent tasks.

Since Booch’s model focused on the design and coding phases

of software development, he recognized a need to couple OOD to

some analysis method. One such method is object-oriented

analysis (OOA) as proposed by Coad and Yourdon. [COAD92, COAD91]

OOA includes a set of analysis activities coupled with a

notation for representing the results. The results of an OOA

analysis are represented as a five layer model: 1) the subject

layer, 2) the class-and-object layer, 3) the structure layer, 4)

the attribute layer, and 5) the service layer. The first OOA

activity examines the problem domain to identify objects and

classes. Objects are abstractions that represent problem

entities and that encapsulate attribute values and services

(i.e., operations). A class is a set of objects that have

uniform attributes and services (i.e., a class is an object

type). Objects and classes tend to be stable, long-lived

concepts in a problem domain. Each object and class identified

is represented as a three-segment rectangle with the name of the

object/class being placed in the top segment (the next two

segments are reserved for attributes and services).

The second OOA activity structures the objects and classes

into 1) a generalization and specialization hierarchy and 2) an

aggregation hierarchy. After developing a structural model,

Coad and Yourdon require the analyst to group related objects

and classes and then to establish a subject (like a subsystem)

representing each group. The fourth OOA activity defines

attributes for each object and class.

The final activity of an OOA requires the analyst to define

services for each object and class; this includes a

specification of the service interface, a description of the

28

detailed behavior performed below each service, and a schematic

showing what messages are exchange between objects. Detailed

service behaviors are described by flowcharts or by state

transition diagrams, depending on which is more appropriate for

a particular service. Messages exchanged between objects are

shown as directed arcs that are keyed to textual descriptions.

While OOA does provide a link between user requirements and a

design technique such as OOD, OOA has only a limited ability to

model concurrency and to specify requirements for real-time

applications. Two more complete approaches exist: Object

Modeling Technique (OMT) [RUMB91] and Object Lifecycles. [SHLA92]

Object Modeling Technique facilitates problem analysis

through three complementary models: an object model, a dynamic

model, and a functional model. The OMT object model provides a

rich set concepts, including generalization and specialization,

aggregation, multiple inheritance, general, keyed relationships

between objects, and constraints. As one would expect, the

graphic notation for describing these concepts becomes quite

involved. OMT’s object model adds a few extensions (constraints

and general relationships) beyond OOA, but in the area of

dynamic behavior modeling, the wealth of concepts that OMT can

represent far surpasses those available with OOA.

OMT proposes the use of scenarios and event traces (similar

to the behavioral-scenario analysis of COBRA) to establish

object-to-object behavior flow. Within objects, OMT adopts the

Statechart notation and semantics developed by Harel. [HARE90]

Statecharts can represent concurrency both among and within

objects. In addition, Statecharts allow an analyst to represent

hierarchies of concurrency. OMT also attempts to treat the

concepts of inheritance together with concurrency by providing

some rules of thumb. For example, given a state transition

diagram (STD) representing an object’s behavior, a subclass of

that object, inheriting the STD, may not add new states nor

29

transitions to the inherited STD. While such rules of thumb

provide good cautions, their practical merits remain limited

because a superclass is unlikely to embody the entire behavior

of every subclass of an object. More realistically, subclasses

will include new attributes and services that require additional

states and transitions; thus, the analyst might be forced to

rewrite the superclass STD to include the new states and

transitions each time a new subclass is defined.

The final OMT model, the functional model, describes

computations within a system. The functional model consists of

multiple DFDs showing the flow of data through the system in

terms of operations. The details of the OMT functional model

are not well-integrated with either the object model or the

dynamic model. A message exchange model, more along the lines

of the one included with OOA, might yield better results.

As with Booch’s OOD, the OMT provides little useful guidance

for structuring the object model into concurrent tasks and

modules. OMT suggests that a system architecture denoting

subsystems be selected from among a set of typical

architectures, or be developed uniquely for an application.

Once an architecture is established, OMT recommends distributing

the objects among the subsystems in a fashion suitable for the

specific problem. Perhaps OMT presupposes that the objects

identified comprise a set of reusable code that can be allocated

into a set of reusable architectures. (Later sections of this

review of related research describe some proposals for such an

approach.)

The Object Lifecycles (OLC) method advocated by Shlaer and

Mellor encompasses an approach to object-oriented analysis that

results in a design and implementation that emulates the

analysis. In a fashion similar to OMT, the OLC method yields

three models of a system: the information model, the state

model, and the process model. The information model divides a

30

problem into subsystems that contain objects and any associated

attributes, services, inheritance, and other relationships.

Three documents comprise an information model. The information

structure diagram (sometimes called an entity-relationship

diagram) graphically depicts the overall relationships between

objects. The object and attribute descriptions and the

relationship descriptions list and define each object, and their

attributes, and the relationships between objects.

The OLC state model represents each object in terms of states

and transitions between states. The state model representation

uses a form of state transition diagram (STD), comparable to the

kind used in RTSA and COBRA. In OLC, events can come from

external sources, from other objects, or from system timers.

OLC recommends that inheritance from the information model can

be combined with the state model by restricting changes in the

state-based behavior of each instance of an object. For

example, an object’s behavior can be defined by the superclass

and subclass at creation time and remain fixed thereafter.

Alternatively, OLC allows the state-based behavior of a subclass

to be formed by using a subset of the superclass behavior. For

special cases, OLC allows an analyst to document alternative

behaviors for different subclasses in a single, superclass STD,

although this violates to a great degree the concept that a

superclass should possess no knowledge of specific subclasses.

In addition to the internal behavior of objects, OLC enables the

analyst to describe the dynamic behavior of relationships

between objects.

To raise the consideration of dynamic behavior to a system

level, OLC provides a model for object communication. This

model represents objects and the asynchronous messages and

parameters exchanged between objects. The model, used to follow

the system’s response to arriving external events, can form the

basis of a simulation of system-wide behavior.

31

The process model comprises the third system view facilitated

by OLC. Here, the focus is on the details within actions (that

is, the transitions associated with entering particular states

in a STD); these details are represented using DFDs. Coupled

with the process model is an object access model that depicts

the synchronous messages and parameters exchanged between state

models and internal, object data.

To transform an OLC analysis model into an object-oriented

design, Shlaer and Mellor advocate mapping the model onto a

preexisting, low-level, run-time model. The required, run-time

model must support five concepts: 1) a main program, 2) a

finite-state machine, 3) a transition, 4) a timer, and 5) an

active instance (i.e., task). With such underlying mechanisms,

implementing the system becomes an exercise in emulating the

analysis model. Each task, perhaps activated by a timer,

encapsulates a finite-state machine that selects an event,

identifies a transition to fire, invokes the actions associated

with the transition, and then selects another event. Shlaer and

Mellor identify active classes as those where a state machine is

associated with each instance; other classes are passive.

Within each active class (and appropriate passive classes) the

passive behavior of a state machine is represented by an

"assigner" class. All messages sent between active classes are

assumed to be asynchronous and also of equal priority. In

addition, all active classes are called from the main program

which presumably acts as a task switcher, enforcing any priority

requirements.

From the foregoing review of research related to software

design methods several observations seem relevant. First,

object-oriented techniques provide more powerful,

problem-modeling facilities than earlier, process-oriented

techniques. This suggests that most domain analysis and

modeling methods will incorporate object-oriented techniques for

32

analysis and specification. Second, heuristics, originally

developed for mapping between control and data flow diagrams and

concurrent tasking architectures, must be adapted to work from

object-oriented specifications. The only means of making this

mapping to date require, as with ELM or OLC, that active objects

be identified during the analysis. ELM also requires that

inter-task messaging and synchronization issues be considered

during the analysis, while OLC assumes that all message

exchanges between active objects are asynchronous. Third,

software analysis and design methods target specific systems,

rather than families of systems. (Below, a review of domain

analysis and modeling research identifies analysis approaches

that can be applied to families of systems.)

Automating Software Design Methods

Some researchers have proposed (semi-)automated mechanisms

for transforming a requirements specification into a software

design. Three such approaches described in the literature

involve transforming data flow diagrams (that is, a structured

analysis specification) into structure charts (representing a

sequential design).

Tsai and Ridge describe a Specification-Transformation Expert

System (STES) that automatically translates a software

requirements specification (expressed as DFDs) into a sequential

design (expressed as structure charts). [TSAI88] The STES,

implemented using the OPS5 expert-system shell, encapsulates the

structured design method of Yourdon and Constantine within

rules. The DFDs and the structure charts in STES are

represented as structured facts. STES uses several textbook

heuristics, including coupling, cohesion, fan-in, and fan-out,

to guide the design process. Each data flow in a DFD has an

associated data dictionary entry that can be used by STES to

33

gauge the degree of coupling between modules in a structure

chart. Determining cohesion among functions is difficult for an

expert system, and so a user is consulted for information

required to make inferences about functional cohesion. STES

attempts to maximize fan-in and tries to achieve a moderate span

of control.

STES operates as a sequential set of phases. First, the DFD

is factored into afferent, efferent, and transform-centered

branches. This factoring results in a top-level design for the

structure chart. Second, each module at the next level of the

structure chart is refined using textbook guidelines for

coupling, cohesion, fan-in, and fan-out. Third, the resulting,

multilevel, structure chart is rendered using a CASE system from

Cadre Technologies.

A different approach to transform DFDs into a structured

design is embodied in a system called Computer-Aided Process

Organization (CAPO). [KARI88] The goal of CAPO is to relieve a

designer from using techniques such as transform and transaction

analysis to create structure charts. CAPO represents DFDs as

flow graphs (nodes are transforms and edges are data flows). A

flow graph is converted into six matrices: 1) an incidence

matrix (showing the relationship between files and transforms),

2) a precedence matrix (showing direct, data flows between

transforms), 3) a reachability matrix (showing whether an

indirect path exists between pairs of transforms), 4) a partial,

reachability matrix (used to determine the precedence violations

needed to compute a matrix of feasible groupings), 5) a matrix

of feasible groupings for transforms, and 6) a matrix of timing

relationships. The set of matrices are used by CAPO to compute

an interdependency weight for the links joining each pair of

transforms. Using these weights, the flow graph is converted

into a weighted, directed graph. The weighted graph is then

34

decomposed into a set of non-overlapping subgraphs using a

number of cluster analysis techniques.

A third approach, described by Boloix, Sorenson, and

Tremblay, to automatically transform DFDs to structure charts is

based on an entity-aggregate-relationship-attribute (EARA)

model. [BOLO92] Here, DFDs are described formally using an EARA

model. Then, transformation rules, based on set theory, are

used to convert the formal, DFD description into a formal

description of structure charts. The transformation is applied

at the lowest level of decomposition of the DFD. The DFD is

partitioned into sets that might become corresponding partitions

in a structure chart. The transformation rules, defined with a

grammar, carefully draw the boundaries between the system and

external entities, so that the resulting structure chart

captures only the automated processes of the system. As a

general guideline, transforms are mapped to modules on the

structure chart. Data flows are mapped to input and output

parameters in the structure chart. Then, modules are added that

do not have corresponding transforms on the DFD (for example,

control modules, modules for access to data stores, and accept,

validation and display modules that connect flows to

terminators). Certain additional modules can be created with

human intervention. Once the transformations are completed, a

set of rough structure charts are generated. A human analyst is

required to improve the structure charts.

Boloix, Sorenson, and Tremblay report that a

... significant amount of research is needed in this area of
transformations. More research must be undertaken on the nature
of the participation of the oracle in various methodologies. ...
Additional research is needed on the problem of transforming one
or more source environments into one or more target environments.
[BOLO92, p. 437]

They further point out that additional research is needed

regarding the management of changes made to the transformed

version of a specification so that traceability from the

35

original specification can be maintained. Finally, they

indicate that methods for applying metrics to evaluate

transformed designs require investigation.

A fourth approach, reported in the literature by Lor and

Berry, transforms requirements into a design, but without using

DFDs as the source and structure charts as the target. [LOR91]

This semi-automated, knowledge-based, approach was developed by

Lor as the subject of a Ph.D. dissertation within the context of

the System ARchitects Apprentice (SARA), a joint development of

researchers at UCLA and the University of Wisconsin. [ESTR86]

Before discussing Lor’s method of transformation, a brief

description of SARA is in order.

The goals for SARA are six: 1) to allow reasoned

consideration of hardware and software tradeoffs, 2) to support

building models of a system’s operating environment, 3) to

separate system structure from behavior, 4) to enable early

detection of design flaws, 5) to facilitate composition,

implementation, and testing of designs, and 6) to assist

individual designers in a manner most comfortable to them. To

accomplish these goals, SARA comprises tools for modeling

structure and behavior. A structure language (SL) enables

designers to specify a fully-nested, hierarchical structure of

modules and module interconnections (using a module

interconnection language). A behavioral model (based on the

UCLA Graph Model of Behavior, or GMB1) allows designers to

specify, analyze, and simulate the dynamic operation of a

design. Analysis and simulation of GMB specifications is

supported by a range of tools. For example, given a GMB

specification, a control flow analyzer can build reachability

graphs; a GMB simulator can derive stochastic queuing models

from GMB specifications.

1 The UCLA Graph Model of Behavior, with appropriate restrictions, is equivalent to a
Petri net model.

36

Lor builds on the SARA environment by providing automated

assistance to help a designer transform a requirements

specification into a SARA structural model and GMB2. Lor uses

DFDs and system verification diagrams (SVDs) to specify

requirements. SVDs provide a stimulus-repsonse model of

behavior that Lor uses to specify interactions between

subsystems within a design. DFDs are then used to specify the

interior of subsystems.

Lor chose a rule-based approach for his design assistant for

two reasons. First, since the current set of rules for

transforming requirements into SARA designs is incomplete,

locking the knowledge into a procedural program is premature.

Second, the sequence of rule firings provides a natural

explanation facility as to why specific design choices are made.

The design assistant encompasses 21 rules for building the

structural model, 59 for synthesizing the control domain, and 37

for modeling the data domain. A SARA structural model is

synthesized by a direct translation of the hierarchy of DFDs;

at the lowest level of decomposition, the data flows map to SARA

domain primitives. A SARA GMB is created from the

stimulus-response model provided by the SVDs, as well as from

the DFDs.

Lor reports that his research provided a better

understanding, and a methodical approach, to designing systems

within the SARA environment. The rules encapsulated in the

design assistant are syntactically complete because every

possible requirements construct is covered. The rules are not,

however, complete in the sense that alternative designs cannot

be considered and that the rules cannot map each requirements

element to a precise design construct. A human designer must

select the target requirements specification, must answer

2 The paper only describes the transformation into the GMB because that was the focus of
Lor’s dissertation.

37

queries as the design progresses (to provide needed information

and to indicate preferences), and must improve the resulting

design once generation is complete. Given the same requirements

specification technique (i.e., SVDs and DFDs), Lor believes that

his approach could be adapted to other design representations by

rewriting the rule consequents; however, since the most crucial

step in Lor’s approach is developing formal definitions,

represented by SARA constructs, for every construct in his

requirements language, adapting to another design representation

would require that this most crucial step be repeated.

Another automated assistant that attempts to bridge between

requirements and design is Fickas’ Critter [FICK92], based on an

earlier tool known as Glitter [FICK90], that targets composite

designs, those containing a mixture of human, hardware, and

software components. Critter uses an artificial intelligence

paradigm of state-based search, relying on a human user to

provide the domain knowledge necessary to guide the search.

Critter encapsulates only domain-independent, design knowledge.

Critter and a human designer interact to develop a design to

solve a domain-specific problem. To date, the results with

Critter are not encouraging. Critter’s limited reasoning

techniques prevent its use on large software engineering

problems; the analysis algorithms used in Critter are too slow

for an interactive design system; Critter’s knowledge-base and

representation omit several classes of system design concepts.

Fischer and Helm describe experience with another form of

automated, design assistant. [FISC92] Their approach is to embed

interactive problem-solving tools into a knowledge-based, design

environment for specific, application domains. By choosing a

domain-specific approach they hope to reduce the semantic gap

between the problem-specification language and the

software-implementation language. Their approach supports a

reuse paradigm of locate (using a CatalogExplorer tool),

38

comprehend (using an Explainer tool), and modify (using a

Modifier tool) in the very narrow domain of graphic-plotting

applications written in LISP. The three, intelligent tools

operate on design objects stored in a catalog of LISP programs

for plotting data. The CatalogExplorer helps to identify

candidate components by asking the user a series of appropriate

questions. Some very detailed knowledge is needed to

distinguish between concepts within the domain. The Explainer

presents examples of candidate algorithms from multiple views:

code, diagram, sample plot, and text. These views operate at

quite a low level. The Modifier helps a user adapt a particular

component to meet the user’s needs, and then to update the

CatalogExplorer and the Explainer to account for the new

variant.

Fischer and Helm report a number of lessons from experiences

with their system. First, finding appropriate reusable concepts

is difficult for a user. Subjects seeking to understand a

concept asked questions only about LISP and plotting (and not

about the specific, application domain in which the plotting was

to take place). The graphic viewers aided comprehension (but

this may be because the domain involved the plotting of data).

The help texts provided by the Modifier proved insufficient to

enable successful program adaptation. Users appeared to have

difficulty decomposing modification tasks into a set of ordered

steps.

The plan for another automated, design assistant, called the

Design Apprentice (DA), is reported in the literature by Waters

and Tan. [WATE91] Unlike the automated assistants discussed up to

this point, the DA aims to refine an already existing high-level

design into a detailed, program design. The DA works within the

context of a larger system, known as the Programmer’s

Apprentice. [RICH88]

39

The Programmer’s Apprentice intends to support all phases of

software development from requirements analysis through software

testing. [RICH88a] The apprentice and the programmer communicate

through a body of shared knowledge about programming techniques.

This knowledge is stored in a library of standard clichés that

represent a model for the domain of computer programming. A

programmer describes a specification in a formal notation,

called a Plan Calculus, and the Programmer's Apprentice reasons

about the needed program and maps the plan into an

implementation. To date, the Programmer's Apprentice provides a

seven-layer, system of knowledge representation and reasoning,

known as Cake [RICH92], a Requirement's Apprentice, and a

debugging assistant.

The Design Apprentice (DA), under development by Tan, will

add another component to the larger, Programmer's Apprentice.

The DA, starting from a high-level design described by a human

designer and from a library of commonly-used fragments of

specifications, designs, and algorithms, supports programming by

successive elaboration. During the elaboration process, the DA

can detect simple errors of inconsistency and incompleteness in

a program description. The underlying environment includes both

domain-specific and domain-independent knowledge. Everything

the DA knows is represented using Cake's frames and the Plan

Calculus.

At the front-end of the DA, a translator will convert design

descriptions (input by human designers in a LISP-like form) into

a plan described with the Plan Calculus. At the back-end of the

DA, a coder will convert plans, representing detailed program

designs, into source code (Common LISP). The heart of the DA is

a designer that will interact with a human and reason, using the

services of Cake, about the transformations required to convert

a high-level design into a detailed design. The DA will also

40

support the notion of browsing the cliché library and of

retrieving clichés based on features from specifications.

The DA research attempts to answer the following question:

Can an automated system succeed in selecting the correct design

path out of the myriad of incorrect paths? Four approaches are

envisioned, two to avoid and two to solve parts of this search

problem. First, the DA operates at an abstract level to avoid

dealing with unnecessary details. Second, the DA uses copious

knowledge to assist in making intelligent decisions. Third, use

of existing algorithms from a cliché library avoids the need to

discover new algorithms. Fourth, getting help from the user

forces the DA to do all reasoning in a manner that can be

explained to the user.

Automatic Programming

Unlike automated, design assistants, which help a human

analyst complete a single, if essential, transformation in the

software development process, automatic-programming systems

attempt to perform, without human intervention, every

transformation required to generate a working implementation

from an initial specification of user requirements. Automatic

programming, as applied to domain-specific applications, was

first defined in the literature by Barstow.

An automatic programming system allows a computationally naive
user to describe problems using natural terms and concepts of a
domain with informality, imprecision, and omission of details.
An automatic programming system produces programs that run on
real data to effect useful computations and that are reliable and
efficient enough for routine use. [BARS85, p. 1321]

To meet Barstow's definition, automatic programming systems

must possess a range of knowledge, including: 1) application

domain knowledge, 2) programming knowledge, 3) mathematical

knowledge, and 4) knowledge of target architectures and

languages. Representing such wide-ranging knowledge might well

41

require automatic programming systems to support multiple

methods of knowledge representation, such as rules [MITH94, ODEL93,

HAYE85], frames [FIKE85], semantic networks [HSIE93, LIM92], and

object-oriented models [RASM93, RETT93, MEYE88]. From Barstow’s

perspective, however, domain-specific knowledge provides the key

to automatic programming.

It might ... be argued that providing domain-specific knowledge
could be part of an interactive specification process. That is,
the automatic programming system would initially be ignorant of
the domain and the user would provide the necessary domain
knowledge during the process of specifying a program; after
several programs have been specified, the system’s knowledge of
the domain would have grown substantially. This seems to be much
closer to the mark: it solves the reusability problem and helps
cope with the diversity of domain knowledge. [BARS85, p. 1321]

Some domain-specific approaches are reviewed immediately in the

following paragraphs, beginning with the results achieved by

Barstow after more than six years of effort.

Barstow describes a system, FNIX, for automatically

programming software that controls devices for logging data from

oil wells. [BARS91] Device-control software must log data, must

control the device, must satisfy real-time constraints, and must

support concurrency and distribution. Device-control programs

are of moderate size.

FNIX uses a transformational paradigm: an abstract

specification is transformed repeatedly through successively

more concrete stages until a compilable, source program is

produced. The components of a typical transformation model

include a, so-called, "wide-spectrum" language (that includes

constructs for describing abstract concepts from the application

domain, as well as constructs for specifying more concrete,

implementation details); a set of sequential transformations;

and a mechanism for controlling search. FNIX, specifically,

embodies 31 transformations; five of these cross levels of

abstraction, while the remainder occur within a given level.

FNIX avoids the issues associated with searching by relying on a

42

user to decide which transformations to apply and when to apply

them. The user gives this information to FNIX using a script

language.

In the example problem described by Barstow 84 steps in a

transformation sequence lead to a seven-line program. Given a

larger specification (say 500 lines), a source program of 2,000

lines might be expected after some 10,000 transformation steps,

involving 500 transform types (most of which remain to be

written, along with control scripts that could number several

thousand lines). Barstow states that FNIX has yet to achieve his

definition of automatic programming.

Another domain-specific, automatic programming system, ELF,

described in the literature by Setliff, synthesizes

computer-aided design (CAD) tools that automatically route wires

in very large-scale, integrated (VLSI) circuits. [SETL92] ELF

must: understand various physical technologies, select an

appropriate, procedural decomposition, choose algorithms and

data structures, manage interdependencies, and generate

efficient code. ELF includes domain-specific knowledge that is

represented in a variety of forms, matched to the specific

problem to which the knowledge applies.

Setliff believes that domain-specific knowledge is necessary

to succeed in synthesizing software. She also states that

abstraction must be applied to separate the design space into

smaller problems (each focussing on design of some

tightly-coupled objects within the bigger problem). Knowledge,

appropriate for a given level of abstraction, must be used to

prune the design space.

ELF, as implemented using OPS5, comprises about 1,300 rules

that transform a user-provided specification into source code

using three phases. First, the design is decomposed into

modules. Then, for each module, data structures and algorithms

are selected. (A detailed description of the approach to

43

selecting data structures and algorithms is available in another

paper. [SETL91]) Finally, source code is generated.

Another automatic system for synthesizing software is

SINAPSE. [KANT91] SINAPSE aims: 1) to reduce the time needed for

scientists and engineers to implement mathematical models, 2) to

allow natural language specification of requirements for such

models, 3) to reuse existing implementations, and 4) to avoid

the introduction of careless errors into the implementations.

To achieve these aims, SINAPSE supports a five step process.

First, a domain model is developed. Second, user requirements

are transformed to the necessary mathematics that underlie the

particular, physical phenomenon being modeled. Then, from the

math models, specific, high-level algorithms are selected,

followed by detailed algorithms. Finally, code is generated.

During this process, design histories are maintained in a simple

tree that allows the user to review the course of decisions and

to change the course at any point. After any changes are

specified by the user, the process moves ahead again from that

point (i.e., no dependency graphs are used to automatically

alter design decisions based on user-directed changes).

Even though SINAPSE is limited to building mathematical

programs for scientific applications, a number of interesting

issues, having applicability to all automatic programming

systems, were identified by the developers. First, a large

investment is required: 1) to model (i.e., abstract, analyze,

and codify) a particular domain, 2) to generate sufficient

programming knowledge, and 3) to maintain the synthesis system

(including the cost of moving the code to multiple platforms,

and the need to generate code for multiple architectures,

particularly for parallel computers). The knowledge

encapsulated throughout SINAPSE is widely dispersed and, thus,

finding the correct changes required to modify the system can be

challenging. Second, if the synthesis system does not produce

44

correct results, then the end users, despite their best

intentions, will examine the target code for the cause of the

errors. This approach to debugging the synthesized software,

reminiscent of programmers who would modify the object code

output by a compiler to compensate for errors within the

compiler, can be costly, unproductive, and risky. Third, the

synthesis process produces a huge, data repository that can be

difficult to manage.

Another automatic, programming system, reported in the

literature by Smith, is the Kestrel Interactive Development

System (KIDS). [SMIT91] KIDS uses a transformation approach,

augmented with domain knowledge, to convert a formal, problem

specification into a working program. The technology underlying

KIDS is REFINE, a commercial, knowledge-based, programming

environment and language that supports first-order logic,

set-theoretic, data types and operations, transformation, and

pattern matching. The REFINE compiler generates Common LISP

code.

To apply KIDS, an analyst must move through a multi-step

process. First, a domain theory (i.e., a model) is created and

written in the REFINE language. The domain theory will enable

the system to reason about particular specifications in the

domain. Once the domain theory exists, a specification for a

particular problem in the domain is developed. The user then

selects a design tactic; currently, four are supported: 1) map

to a library routine, 2) divide-and-conquer, 3) global search,

and 4) local search. Next, the user selects (from a menu)

optimizations to apply to particular expressions within the

specification. KIDS then searches for appropriate, high-level,

data structures (sets and sequences are supported) and converts

them into machine-oriented, data types before source code is

generated. The generated code is compiled into a working

program.

45

The example use of KIDS described in Smith’s paper attacks a

specific problem (the Costas array problem) in the field of

sonar and radar, signal processing. Developing the domain

theory and the specification take an enormous amount of effort

(as with most first-order logic and set-theoretic specification

techniques). This effort might prove a major impediment for

problems of any real size.

End-User Programming

Distinct from automatic programming, end-user programming

enables a computer-naive user to interact with an intelligent

agent to select, exercise, evaluate, and modify an application

program. No formal specification of requirements is needed; in

fact, the user need only bring the ideas in his head to a

computer terminal to begin the process. Researchers at the

Digital Equipment Corporation (DEC) have developed such a

system, called Easyprogramming. [MARQ92]

 In outline, the DEC system maps the features of a specific

application to appropriate abstract methods (i.e., control

structures stored in a knowledge base), elicits expertise

(including variations and exceptions), translates the expertise

into a form that the selected abstract control structure can

use, and then modifies and extends the application to cover

changes in the application requirements. To accomplish these

tasks, the DEC system comprises three tools: Spark, Burn, and

Firefighter. For a better understanding of the system, each of

these tools is discussed in turn.

Spark, with help from a user, sifts through a hierarchy of

pre-defined control structures to select an appropriate approach

for the specific application at hand, and then, by consulting

with the user, customizes the selected approach. Each component

in the hierarchy is characterized by a set of assumptions about

46

the type of inputs needed and the kind of outputs produced.

Where multiple control structures appear to be appropriate,

Spark queries the user to reach some conclusion on which

structure would be best. If Spark cannot easily explain the

source of ambiguity to the user, then Spark simply makes some

default assumptions and leaves the problem for Firefighter.

After completing its work, Spark calls Burn to further customize

the selected solution.

Burn relies on a library of knowledge acquisition tools, one

is associated with each pre-defined, control structure. Each

knowledge acquisition tool knows what knowledge is required for

its associated control mechanism, knows how to elicit the needed

knowledge, and knows how to represent that knowledge in a form

needed by the control mechanism. For example, Burn might ask

the user for some solutions to an example problem and for a

means of distinguishing between the solutions. After Burn

acquires the necessary knowledge and configures pull-down menus

for the application, Firefighter is dispatched.

No program generated by Burn will work well until it has been

used for a while, and is then modified to account for forgotten

or unanticipated factors. Burn programs are executed under the

control of Firefighter. Firefighter is an evaluator that

monitors the performance of Burn programs, detects poor results,

and then queries the user to diagnose and debug the application.

If a detected error results from missing or incorrect knowledge,

then the knowledge acquisition tool is invoked. If the control

mechanism is inappropriate, then Spark is invoked to select a

new mechanism.

Firefighter employs three rather sophisticated, complementary

evaluation techniques to monitor the performance of Burn

programs. The first two evaluation techniques rely on specific

code that is included in the control mechanisms, while the third

technique is built into Firefighter. The first evaluation

47

technique might be called: GOOD DOG, BAD DOG. Each time the

application executes, the user is queried about whether the

performance was adequate. If a BAD DOG response is received,

then the knowledge acquisition tool is invoked. The second

evaluation technique might be called: I’VE BEEN A BAD DOG. The

application monitors its own performance to detect

inconsistencies and inadequate results. When such problems are

detected, the user is informed and the knowledge acquisition

tool is invoked. This strategy is necessary because most users

will not sit still during the initial development while Burn

elicits knowledge about every type of case that the program

might face. Instead, Burn asks for a minimum of information to

start, the application then monitors its own performance, and

the user is required to provide additional knowledge as needed

to resolve problems and improve the performance of the

application. The third evaluation strategy might be called: I

THINK YOU MIGHT NEED A HORSE. Since Spark initially selects a

control mechanism by making strong assumptions on weak evidence,

Firefighter must compare the application output to the

assumptions in order to detect incorrect control mechanisms.

When an error is suspected, Spark is invoked to suggest an

alternate control mechanism.

The goal of the DEC system is to supply reusable mechanisms

in a usable fashion. Marques and his colleagues plan an

elaborate set of steps to evaluate progress toward their goal.

To assess usability they built nine applications themselves, and

then presented them to users. (At the time of the report, these

applications were being evaluated by the users.) If the

applications appear useful, they plan to write detailed

instructions for specific application tasks and then to ask

users with various levels of programming skill to build some

programs to solve the tasks. Then, they will ask domain

experts, who perform a task well, but manually, to create a

48

full-scale program using the tools. (At the time of the report,

one program had been built by a user; the job took eighteen

days.) As a final test, they will ask an experienced programmer

to develop a full-scale, hand-coded program to solve a selected

application. They will then compare the development time and

utility of the hand-coded program with that of a user-developed

program.

To demonstrate reusability, Marques and his colleagues need

to show that new control mechanisms are not needed for each new

application. (This is critical because they admit that the cost

of building mechanisms and their associated knowledge

acquisition tools is too large if they need a special tool for

each new application.) Each of the nine programs that they

developed used between two and six mechanisms; thirteen

mechanisms were used altogether. Seven applications used the

dialog manager, six used the select mechanism, and five used the

classify mechanism.

Marques and his colleagues report that "[o]ne of [their]

biggest problems is getting people to ’make contact’ with

Spark’s activity model. People buried in the details of ’real

work’ have difficulty understanding generic, abstract models of

their tasks unless they helped to create the models." [MARQ92, p.

29] In fact, the example given in their report, an example of

sifting through the hierarchy of problem/solution models, shows

a bewildering array of possibilities. More discouraging is

that, upon selecting an incorrect mechanism, the user can be led

through a tedious, repetitious cycle of programming by example

only to be sent back to the beginning to select a more

appropriate mechanism. The basic approach appears to be

programming by educated guess, followed by trial and error

refinement.

Marques and his colleagues have developed the most

sophisticated, computer-assisted software development tools

49

reported in the literature to date. The tools compose and

refine an application from a set of reusable components. The

composition method employs knowledge encoded within the tools,

coupled with knowledge elicited from a domain expert. The

reusable components and the elicitation, generation, and

run-time tools define an architecture into which elicited

knowledge can be encoded. Instead of relying on standards to

define an open architecture, the developers have constructed a

closed environment.

The system produced by Marques and his colleagues meet the

criteria for an automatic programming system, as defined by

Barstow in 1985, with one exception. The reliability of

programs produced by the DEC system cannot be assessed because a

given application program is never really completed. The

program continues to be refined, growing smarter, and presumably

more reliable, with use.

Reuse Through Domain Analysis And Modeling

In the absence of practical automatic or end-user

programming, numerous software engineering researchers advocate

specifying, designing, and implementing systems in a manner that

enables the results of such labors to be reused in the future;

and then, once the future arrives, automated mechanisms should

enable these previous investments to be reused, improving both

the productivity of software developers and the quality of

software products. Below, several proposed approaches to

software reuse are reviewed. Each of these approaches envisions

domain analysis and modeling as the initial, required

investment. The approaches differ, however, in the means

proposed for moving from a domain model to a working software

system.

50

One of the first approaches to software reuse through domain

modeling was Draco, proposed by Neighbors. [NEIG89, NEIG84] Draco

enables analyses and designs to be reused, as well as actual

software components. Domain analyses result in the definition

of a domain language. The domain language, along with specified

mappings onto languages for other, lower-level domains, forms a

model of the domain. Using the appropriate domain language, an

analyst can describe the requirements for specific systems

within a domain. The requirements specification is then input

to a domain language parser (one must exist for each domain

language) which converts the specification to an internal form,

that is, a parse-tree. To create an implementation, a series of

transformations is needed; each specification in a given domain

language is converted to a specification in the language of a

lower-level domain, until, for each component specified, an

execution model is created. In effect, the lowest-level

transformation for any given concept involves a mapping from a

domain language construct to an execution model construct. Once

all concepts from a system specification have been mapped to

constructs in the execution model, software components,

representing each execution model construct, can be extracted

from a reusable components library and linked to form an

implementation.

Draco can be viewed as an underlying execution model, coupled

with some initial mappings from low-level domain concepts to the

execution model. Each domain added to the model requires an

analyst to define a new, domain-specific language and mappings

between that language and existing domain languages, or the

execution model. This leads to bottom-up construction of a

richer set of domain models that can complicate evolution and

maintenance. A domain analyst must know how to describe

mappings between each existing, domain-specific language and new

languages that are created over time. Since these complex

51

mappings must be manually created each time a new domain

language is defined, a Draco system might become unwieldy. In

the end, Draco domain analysts become designers of translators

between newly-created languages and a growing array of

nonstandard, lower-level languages.

A different approach to domain-oriented software reuse is

proposed by Ornburn and LeBlanc. [ORNB93] They propose, in one of

four forms of component composition, to instantiate

implementations from preexisting, generic architectures (within

a specific domain) augmented with information extracted from

component descriptions. In a second form of composition, they

propose to generate the generic architecture first using a

generator. In a third form, they propose to build components

from higher level descriptions. In a fourth form, text from a

component generator would be processed to produce an

implementation. They describe several experiments with their

approach using the domain of protocol handlers for a

telecommunications system. In one experiment, they built a

generic architecture for handling multiple instances of a

protocol handler and instantiated that architecture with a

component description for a specific protocol. In a second

experiment, they created a description of a protocol handler

suited for use with a component generator. In general, they

envision that components are described in two forms: 1) a path

expression and 2) a code template that implements a path

expression.

As described, the Ornburn and LeBlanc approach suffers from

familiar inhibitors to software reuse. How will the population

of generic architectures and components be created? How will

programmers locate, comprehend, and modify the components and

architectures? How can management be convinced to make the

investment required to build generic architectures and component

generators?

52

A more pragmatic approach to software reuse within a domain

is proposed by Arango, Shoen, and Pettengill. [ARAN93] "The high

cost of recovering critical knowledge motivates our formalizing

it for reuse." [ARAN93, p. 234] They believe that improvements in

software quality and productivity occur when designers operate

in a domain-specific workspace that consolidates information

from domain analyses into an automated, information-retrieval

system.

A domain-specific workspace consists of two types of

databases. Technology books consolidate the best organizational

knowledge available about a class of problems. Product books

consolidate knowledge about individual instances of solutions to

specific problems. For a system composed of 32K lines of

assembly code, experience shows that between ten and twenty

technology books may be required. To date, Arango, et al, have

realized benefits from using their approach on projects in a

manual form. (They recognize that as the amount of information

grows, automated support will prove essential.)

Technology books provide the key to capture, for reuse, the

results of domain analyses using a well-defined process. First,

a domain analyst defines a language for specifying problems

within a domain. Then, formal models are created for solutions

to specific problems in the domain. Third, technology books are

created to demonstrate that models of known solutions explain

systems within the domain. Fourth, good designs, that map

solutions to specific implementation technologies, are

encapsulated within the technology book for the domain. For

each design, the technology book must explicitly specify issues,

assumptions, constraints, and dependencies. Finally, links

between reusable, software modules and designs are encoded in

the domain, technology book.

The pragmatism behind technology books stems from the lack of

assumptions about any particular execution model, architecture,

53

programming language, or elaborate transformations. Technology

books simply identify artifacts and the relationships between

them and then represent them in an accessible form. Arango,

Shoen, and Pettengill describe plans for an automated system,

called RADIO, to automate technology books. RADIO will consist

of an object-oriented database (ObjectStore), a modeling

language (DOLL) for representing structures that can be indexed,

and a informal portion (using FrameMaker to store texts,

pictures, tables, and equations). The information contained

with a technology book is human-readible and is meant to be

accessed, understood, and used by a human analyst. In this way,

technology books aim to address some of the hard problems

surrounding reuse: classification, location, comprehension, and

adaptation of components. Using technology books, any software

created within an organization can be archived in a form that

enhances the possibility for reuse.

A more ambitious approach to the Reuse Of Software Elements

(ROSE) is described by Lubars. [LUBA91] Specifically, Lubars

discusses ROSE-2, a descendant of earlier work (IDeA and ROSE-1)

at the Microelectronics and Computer Technology Corporation

(MCC). The general aim of these MCC efforts is to reuse

software requirements and designs, adapting them to solve new

problems. MCC researchers believe that architectures tend to

stay stable in families of systems; such stability should allow

past requirements analyses and specifications to be reused,

along with key, design decisions and supporting code. To

achieve these aims, designs must be sufficiently abstract to

cover a family of related problems, and information must exist

showing how to customize designs for specific instances.

The initial MCC effort in this area was the Intelligent

Design Aid (IDeA). IDeA implemented a faceted classification

scheme (as proposed by Prieto-Diaz and Freeman) for organizing

and searching the reuse database. IDeA could generate

54

executable prototypes of designs, specified as DFDs, from a

library of processes and a module interconnection language. A

later MCC effort, ROSE-1, combined concepts from IDeA with the

software template system (STS) and a data-type reuse system.

IDeA served as a front-end and STS served as a back-end, along

with a library from which DFD processes could be mapped to

abstract data types and implementations. ROSE-1 could generate

prototype code in C, Pascal, or Ada. These compiled prototypes

proved more efficient than the IDeA prototypes (which used a

system called POLYLITH).

ROSE-2 builds upon a knowledge-based refinement paradigm

where user-supplied requirements guide the selection and

customization of a high-level design. As reported by Lubars,

ROSE-2 will automate his refinement paradigm. The system will

be supported by a library of high-level design schemas and a set

of refinement rules. A truth maintenance system will be used to

record all dependencies between requirements and design

consequences. This will enable ROSE-2 to use

dependency-directed backtracking to explore alternative designs;

 IDeA and ROSE-1 required the user to change the initial

requirements specification and reapply the refinement rules to

generate alternative designs. The low-level design

representation for ROSE-2 will be Petri Nets, from which several

views can be generated (e.g., hierarchical structure, DFDs,

control flow, and state-oriented behavior). From the

literature, it appears as if a top-level design in ROSE-2 might

be a requirements specification.

ROSE-2 will implement a three phase process. First, a design

schema will be selected that matches the user requirements.

Second, an instance of the selected schema will be instantiated

from the user requirements. Third, refinements and design

decisions will be applied based on user input. The current

state of ROSE-2 cannot achieve the intended process for several

55

reasons. For one, ROSE-2 has yet to address mechanisms for

selecting design schemas from a reuse library based on user

specifications. For another, ROSE-2 provides no support for

constructing design schemas. In fact, Lubars points out the

same serious limitations for IDeA, ROSE-1, and ROSE-2: creating

a population of design schemas and refinement rules remains

expensive. Lubars hopes that research in design recovery and

domain analysis techniques will overcome these limitations.

56

Domain
Analysis &

Specification

Domain
Design

Implementation of
Domain-Specific

Reusable
Components

Target-System
Requirements

Elicitation

Target-System
Design Generator

Target-System
Implementation

Executable
Prototype &
Simulation

Model

Reusable
Component

Library

Domain
Requirements

Unsatisfied
Domain
Requirements

Target System
Requirements

Unsatisfied
Target System
Requirements

Unsatisfied Requirements Target
System

New
Component

Imported
Reusable
Component

Reusable
Domain
Architecture

Reusable
Domain
Specification

Target
System
Specification

Target System
Constraints

Unsatisfied Constraints

Target System
Architecture

Figure III-1. Evolutionary Domain Lifecycle Model
 [GOMA91]

A different approach to software reuse based on domain

analysis and modeling is the Evolutionary Domain Lifecycle

(EDLC) model proposed by researchers at George Mason University

(GMU). [GOMA93, GOMA92, GOMA91] The EDLC includes a life-cycle

process (see Figure III-1), a domain modeling language, and

tools for translating user requirements into an implementation

(only a subset of these tools exist at present).

The first step in the EDLC process is analysis of a domain

and specification of a domain model. The domain modeling

language for EDLC is object-oriented, supporting several views

of the domain. One view, called the aggregation hierarchy,

enables an analyst to express a composition hierarchy (using the

part-of relationship) to depict the decomposition of complex,

aggregate objects (subsystems) into less complex objects,

resulting at the leaves of the hierarchy in simple objects

within a given domain. A second view, called the

generalization/specialization hierarchy, allows a domain analyst

to describe classes of objects in a domain (using the is-a

relationship). This class hierarchy can express similarities

and differences between objects. To model a specific

requirement, an analyst can select the most appropriate objects

from the class hierarchy or can specialize the most appropriate

existing objects (updating the domain model at the same time).

A third view, called object communication diagrams, enables an

analyst to express the message passing relationships between

objects within a domain. The object communication diagrams are

structured hierarchically in concert with the aggregation

hierarchy, so a picture of inter-object message exchange can be

generated at any level of abstraction (even mixing such levels,

if desired). The fourth view provided by the EDLC domain

modeling language uses state transition diagrams. Any object

within the domain that requires state-based behavior can be

described using a state transition diagram. The fifth view of

57

EDLC ties user-oriented features in the domain model to domain

objects. This feature-object dependency view indicates which

objects are required for all systems in the domain, which

objects are optional, which objects must be included together,

and which objects are mutually exclusive. EDLC domain models

can be described using a CASE tool known as Software Through

Pictures (STPs); however, the semantic interpretation of the

resulting data structures is formed using a separate object

repository (generated with a tool written at GMU).

Once a domain model exists in the object repository,

target-system specifications can be generated for a user. The

user describes the features needed for the system to a

knowledge-based, requirements-elicitation tool (KBRET). [SUGU93]

KBRET then uses the feature-object dependencies in the domain

model to extract and generate a specification that meets user

needs. KBRET enforces the mandatory, inclusive, and mutually

exclusive relationships, as expressed in the domain model. STP

can be used to generate graphic output of the multiple-view

specification extracted by KBRET.

The remaining phases of the EDLC have yet to be implemented.

The EDLC vision can be seen in Figure III-1. Given a

target-system specification (from KBRET), a tool should enable

execution of a prototype to support functional analysis of the

system; a simulation model could also be used to evaluate the

performance of the system. The target-system specification

might then be fed into a design generator to form a high-level

architecture; presumably, EDLC envisions that design generation

would be accomplished by selecting and instantiating a specific

design from among a set of preexisting designs for the domain.

Finally, a target-system implementation would be generated by

instantiating the design from a library of reusable components.

The EDLC model provides a useful structure for developing

families of systems from a domain model. The domain modeling

58

language takes advantage of powerful concepts from

object-oriented analysis and state-based, behavior analysis.

The existence of KBRET, coupled to STP, facilitates generation

of target-system specifications with little effort on the user’s

part. As with any approach that requires a domain model,

significant effort will be required to analyze and specify each

new domain. If designs are to be instantiated from a set of

generic designs for each domain, then additional expense will be

required to populate a database of domain designs and to find a

means of matching target-system specifications to existing

designs. Creating the library of reusable components could also

prove expensive.

IV. Automating The Reuse Of Design Knowledge

The improvements in software productivity and quality

promised by domain analysis and modeling techniques have not

been fully realized, especially in the domain of real-time

applications. Given an appropriately analyzed domain with a

fully-specified, domain model, automated mechanisms exist for

generating specifications for particular systems from the domain

model (which encompasses a family of systems). [SUGU93]

Unfortunately, the next step in the development process, mapping

a target specification to a high-level design, requires, at the

present time, the intervention of skilled designers. This

requirement introduces a number of impediments into the

development process. First, skilled designers, especially

designers of concurrent and real-time software, are a rare

commodity. [BROO87] This shortage causes a bottleneck in any

development process and creates a shortfall of high-level

designs applicable for reuse within a domain. The shortage of

skilled designers also means that few, if any, alternative

designs can be considered. [BERE84] Second, designers tend to be

59

overused. Such overuse causes even skilled designers to make

mistakes.

Experience with large software systems shows that over half of
the defects found after product release are traceable to errors
in early product design. Furthermore, more than half the
software life-cycle costs involve detecting and correcting design
flaws. [BERE84, p. 4]

Third, designers tend to use concepts, methods, and notations

that are familiar to them; thus, the ability to catalog, find,

and reuse designs can be inhibited by superficial differences

among designs created by various designers. [BERE84] Fourth, even

skilled designers need tools to analyze designs for functional

correctness and performance characteristics. Such tools are

generally unavailable, but where they do exist they usually make

assumptions about the design method used, or the underlying

means of representing the design.

Dependence on skilled designers, lacking appropriate,

automated tools, results in a design barrier that impedes

effective use of domain analysis and modeling approaches for the

generation and reuse of concurrent, software designs. Referring

to the Evolutionary Domain Life Cycle (EDLC) model illustrated

in Figure III-1, the design barrier arises once a target-system

specification has been generated. In the EDLC model, a design

generator is envisioned that creates a target-system

architecture, presumably reusing some preexisting, domain

architecture. This represents one approach to overcoming the

design barrier. Unfortunately, the assumed existence of a

reusable, domain architecture presents a difficulty. As pointed

out be Lubars, when discussing IDeA, ROSE-1 and ROSE-2, creating

a population of reusable, design schemas is expensive. [LUBA91]

Lubars goes on to state that even if such a population exists,

there are no agreed methods for selecting between alternative,

similar, design schemas for a given requirements specification.

60

A second approach to overcoming the design barrier might

involve addressing issues of concurrency and resource-sharing

during the domain analysis and specification phase (see the

first rectangle in Figure III-1). For example, a concurrent

modeling method, such as Entity-Life Modeling (ELM) or Object

Life Cycles (OLC), might be applied. This type of approach

embodies two main drawbacks. First, domain analysis and

modeling should concentrate on understanding the problem domain,

not the solution domain. While identifying concurrent objects

might be viewed legitimately as being within the purview of

problem analysis, deciding how such objects should be packaged

into tasks and modules is clearly outside the scope of problem

analysis. This means that, even if ELM, OLC, or a like approach

were adapted as a domain analysis and modeling method,

additional, high-level, design issues would remain to be

decided. Second, domain analysis and modeling should proceed

independent of assumptions about the capabilities of particular

target systems on which solutions can be implemented. ELM

assumes that solutions will be implemented in a multi-thread

environment where tasks share address space (and thus can share

access to software modules). OLC assumes that concurrent

objects will be represented as finite-state machines that

communicate with each other via asynchronous, message passing.

These, and other such, assumptions are generally inappropriate

for analyzing and modeling problem domains.

A third approach to overcoming the design barrier involves

mapping the domain analysis directly to a concurrent solution,

where each object in the problem specification becomes a

concurrent (or active) object in the design (and

implementation). For example, the Actor model proposed by

Hewitt and defined by Agha [AGHA90, AGHA89, AGHA87, AGHA87a, AGHA86]

could be assumed, and a parallel-programming environment, such

as Regis, [MAGE93] could provide a target environment.

61

Unfortunately, an approach such as this can result in excessive

concurrency. Generally, as the number of tasks in a solution

increases, the amount of overhead associated with task switching

also increases. For many target environments, such

task-switching overhead can become prohibitive. For other

environments, such as massively parallel architectures, a

multitude of tasks might prove ideal. These are decisions to be

made by a designer based on performance requirements and on the

capabilities of the target hardware and operating software.

Automatically mapping every object in a specification to a

concurrent task takes these decisions away from the designer and

can lead to designs that are inappropriate in many situations.

A fourth approach to overcome the design barrier proposes

assisting a designer to generate designs from a requirements

specification. Several instances of this approach, limited to

designs for sequential programs, were reviewed previously (in

Section III). This type of semi-automated approach to design

generation forms the basis for a proposal, set forth below, to

overcome the design barrier inherent in domain analysis and

modeling processes. The proposed approach is unique in several

facets. First, the proposed approach distills heuristics from

several real-time, design methods into a set of expert rules.

This approach has previously only been tried with transform

analysis from structured analysis and design. Second, the

proposed approach couples the design assistant rules to a domain

modeling technique. The result is a generator that can help to

produce specific designs from domain models. Most other domain

modeling approaches either: 1) attempt to match domain model

outputs to preexisting designs or 2) to transform domain models

to software components. Third, the proposed approach can be

used with any domain modeling technique, or with any

object-oriented analysis method, that can represent the analysis

as a network of objects (possibly connected to external devices)

62

that communicate by passing messages. As a result of this

trait, the proposed approach can be applied to assist in

generating concurrent designs from any object-oriented analysis

method. Fourth, the proposed approach can help to identify

essential information that the analysis failed to supply, can

elicit the missing information, and then can facilitate the

retention of that information for future use. Most other

approaches based on domain analysis and modeling require that

the analyst acquire all information needed for subsequent

transformations before such transformations are considered.

Fifth, the proposed approach produces a representation of a

concurrent design that is independent of any specific purpose.

With appropriate tools, the resulting design can be represented

graphically or printed, can be analyzed for performance

characteristics, can be simulated to assess the function and

performance of the design, or can be translated, either

automatically or by hand, into an implementation. Most other

approaches result in specific representations intended for

specific purposes.

A Proposal For Reusing Design Knowledge To Generate Designs

The use of knowledge-based systems to improve human abilities

to generate and evaluate designs for a range of applications

(including, for example, architecture, system configuration, and

building construction) is the subject of much research and great

promise. [COYN90] Below, a knowledge-based strategy is proposed

to overcome the design barrier that exists in domain analysis

and modeling approaches to software reuse. More specifically,

given:

1. 1) the EDLC model, as shown in Figure III-1,

2. 2) the domain-modeling language embedded in EDLC, and

63

64

Requirements
Elicitor

Design
Generator

User
Interface
Manager

Target
Environment
Elicitor

Requirements
Specification
Instances

Design
Instances

Target
Environment
Description
Instances

Requirements
Elicitation
Knowledge

Design
Decision
Knowledge

Design
Process
Knowledge

Design
Model

Requirements
Specification
Model

Target
Environment
Description
Model

Target
Environment
Elicitation
Knowledge

Object
Communication
Diagrams (OCDs)
From
EDLC Target
System Specifications
(or other OOA methods)

Designer’s Expert Assistant

Design
Information

Design
Engineer

Figure IV-1. Proposed Architecture For A Designer’s
 Expert Assistant

3. 3) KBRET (a tool for generating target systems from a domain model),

an expert system is envisioned to assist in the creation of

concurrent designs for families of systems. An architecture for

such an expert system is illustrated in Figure IV-1.

Requirements specifications, in the form of object

communications diagrams (OCDs) that give one view of a

target-system specification output from an EDLC domain model

using KBRET3, form the basis for beginning a design. The OCDs

must, however, be extended with additional information to form a

more complete requirements specification model. Any additional

information that is not provided by the input OCDs must be

obtained from an analyst or designer. The requirements elicitor

fulfills this function using requirements elicitation knowledge.

Once a requirements specification exists, the designer

selects a target environment for which a design is to be

generated. A target environment is characterized by a

description that indicates essential traits that might affect

various design decisions. Should the necessary description not

exist, a target-environment elicitor obtains the traits of a

new, target environment.

Given a requirements specification and a target-environment

description, the design generator can be invoked to formulate a

structuring of tasks and modules that constitute a high-level

design. The design generator must understand the models for

requirements specifications, target environment descriptions,

and designs. Knowledge embedded within the design generator

controls a reasoning process that makes the necessary design

decisions. The output of the design generator is a design,

3 The initial OCDs could be generated from other object-oriented analysis methods. For
example, the OOA method of Coad and Yourdon identifies message connections between
objects; the Object Life Cycles approach of Shlaer and Mellor includes an object communication
model; the OMT method of Rumbaugh does not provide a specific model for message
communication between objects, but such a model can be derived easily from the object and
functional models of OMT.

65

encoded in a form independent from any particular use, but a

form that enables a range of possible uses.

The proposed approach, that is, assisting designers of

concurrent software with an expert system, aims to achieve three

general and four specific goals. Generally, the expert system

should improve the productivity of inexperienced designers of

concurrent software, should improve the quality and consistency

of concurrent, software designs, and should overcome or avoid

some software reuse problems concerning designs. Specifically,

the proposed approach reuses design knowledge to assist in the

critical transformation from a requirements specification to a

concurrent design. The proposed approach elicits automatically

any missing information needed to make design decisions. The

proposed approach supports object-oriented, domain analysis and

modeling methods that provide, or can be mapped to, object

communication diagrams. The proposed approach ensures

traceability from a requirements specification to a concurrent

design.

Realizing the proposed approach requires solving some

specific research problems. First, applicable design-decision

heuristics must be identified. For concurrent designs, several

sources exist for such heuristics. The various design methods

proposed by Gomaa include a rich set of heuristics for task and

module structuring. [GOMA93a] Nielsen and Shumate have also

proposed some heuristics. [NIEL88, NIEL87] The Entity-Life

Modeling approach developed by Sanden also contains insights

regarding concurrency. [SAND94, SAND89, SAND89a] While none of these

methods directly address the problem of mapping object

communication diagrams to tasks and modules, many of the

suggested heuristics should prove adaptable to the problem at

hand.

The second research problem involves identifying and

specifying the knowledge necessary to support the applicable

66

design heuristics. One part of this problem requires that the

bare, object-communication-diagram view of the requirements

specification be extended to include additional information on

which design decisions can be based. The specific information

that keys the decision-making of designers must be identified

and specified in a form that will enable elicitation of such

information. A second part of this problem requires

identification of the traits of a target environment that will

affect design decisions. Here, a model must be created to

describe target environments. A third part of this problem

requires definition of the components of a design and the

relationship between these components, leading to a model for

describing the generated, concurrent designs. Creating these

models, for requirements specification, target-environment

description, and design, will require a careful analysis and

evaluation of assumptions that underlie various design methods.

A third research problem requires the identification and

structuring of applicable knowledge about the design process.

Once a set of design heuristics exists, the order in which

decisions can be made must be considered. This will likely

require that decisions be grouped into classes, according to the

specific issues that they address, and then that the classes of

decisions be applied in a particular order. Here, the available

design methods for concurrent software should provide a starting

point for considering these questions.

A fourth research problem requires the creation of

elicitation strategies to obtain missing information from a

designer. Strategies are required to elicit requirements

information and target-environment traits. Elicitation of

requirements information must be carefully considered because a

user can only be asked about details that he can be reasonably

expected to know. This restriction might require the

requirements elicitor to reason about the basic facts provided

67

by a user in order to draw complex conclusions about

requirements.

As each research problem is solved, a knowledge-

representation method must be selected. [GONZ93, WEBS88]

Representing this knowledge then becomes the fifth research

problem. The requirements model, the design model, and the

target-environment description model can be represented by

either a semantic network [HSIE93], a frame-based notation

[FIKE85], or an object-oriented model. [KAIN94, BUSC93, MEYE88] The

design-decision heuristics seem to suggest a rule-based

representation. [GONZ93, GIAR89 ,HAYE85] The required, design-process

knowledge appears procedural. Procedural knowledge can be

represented by procedural, programming languages, by mixing

phase constraints into production rule systems, by employing a

rule-priority scheme, and by encapsulating rules into modules

whose execution is controlled by a focus stack. Each of these

representations for procedural knowledge should be considered.

Elicitation knowledge must also be represented. A combination

of procedural knowledge and inference networks appears to be

applicable to the issues faced. Procedural knowledge can

control when specific questions are asked of the user, while

inference networks can be used to reason about the information

provided by the user.

To verify that the required knowledge is properly identified

and represented, a sixth research problem must be addressed.

The identified heuristics, models, processes, and elicitation

strategies must be implemented to ensure that they work

effectively and efficiently. Implementing the envisioned system

will require an expert-system shell capable of representing

procedural knowledge, rules, inference networks, and

object-oriented models (or semantic networks or frames,

depending on the choice for representing static models).

Several candidates exist, however, the tool envisioned for

68

implementing the proposed, designer’s expert assistant is CLIPS

version 6.0. [GIAR93, GIAR89] CLIPS provides a portable

environment (that runs under DOS, Microsoft Windows, Apple

System 7, UNIX, and Digital’s VMS), incorporates an

object-oriented model together with a rule-based production

system, provides for modular application of rules, and is

inexpensive to procure.

Solving the research problems described above will lead to

several specific benefits. First, by coupling a design

generator to a domain analysis and modeling system, some serious

reuse problems can be solved or avoided. One such problem is

the lack of high-level designs for target specifications from a

domain. A designer’s expert assistant facilitates the creation

of high-level designs from target specifications; thus, the lack

of a design for a target specification is directly addressed by

the proposed approach. The proposed approach allows one to

avoid addressing criteria for classifying designs, for matching

designs against target specifications, and for understanding and

adapting preexisting designs to new target specifications. Even

where the reuse model of classification, location,

comprehension, and modification is preferred, an automated,

design assistant should enable the design repository to be

populated more quickly than would be possible with strictly

manual approaches.

Second, generated designs, captured in automated form, can be

subjected to various forms of dynamic and static analysis. For

example, Sha and Goodenough show how multitasking designs can be

analyzed, using rate-monotonic analysis, to determine whether

timing requirements can be met under worst-case conditions.

[SHA90] Smith and Williams describe a means of generating queuing

models from multitasking designs to enable estimation of

response time under typical system loads. [SMIT93] Pidd presents

guidelines for deriving data-driven, generic simulators for

69

specific domains. [PIDD92] Dillon shows how to verify safety

properties of multitasking programs. [DILL90]

A third benefit of the proposed approach is that the

generated design will be complete and consistent with the input

requirements specification. Every object and message in the

requirements specification is guaranteed to be allocated to a

design element, or to be identified automatically as a

requirement that could not be mapped. This avoids a common

source of design errors that occur when the human designer

simply overlooks some of the requirements. In addition,

traceability between the elements in the requirements

specification and elements in the design are assured.

Automating design knowledge can help inexperienced designers

to create better, more consistent, designs, faster, and with

fewer mistakes. Even when designers are experienced, the

increased speed with which designs can be created enables more

design alternatives to be considered then would be possible

without automated assistance. Considering more alternatives

might result in improved flexibility, increased performance, and

lowered cost for the final design. Producing designs more

quickly also provides an additional benefit: formerly

undetected flaws in the domain model can be revealed. This

follows because decisions made during domain analysis and

modeling result in object identification and structuring

decisions that lead to specific, high-level, design decisions.

The result of applying such design decisions to particular

object communication diagrams might lead to poor designs. In

such cases, the domain analyst, in consultation with a designer,

can revisit the domain model to construct a more appealing

structure.

The next section investigates the feasibility of the proposed

approach to generate, semi-automatically, concurrent designs.

In particular, a small example of a requirements specification

70

for a cruise-control system is analyzed against some design

heuristics that could be used to transform the requirements

specification into a multitasking design. The heuristics are

implemented as CLIPS rules and applied to a representation of

the requirements specification to generate a design. The

results suggest that the proposed approach is feasible.

V. A Case Study

This section presents a small, case study to demonstrate that

the proposed approach to generating designs, as described in

Section IV, appears feasible. The case study begins with a

requirements specification for a cruise-control system (CCS).

The context diagram, Figure V-1, for the CCS shows that the

software must monitor inputs from four devices in order to

71

Figure V-1. Context Diagram For A Cruise Control System

Cruise
Control
Lever

Automobile
 Cruise Control

System

Engine
Sensor

Brake
Sensor

Shaft
 Rotation
 Sensor

Throttle
Actuator

Engine State

Brake State

Lever Interrupts &
Lever Positions

Shaft Rotation
Interrupts

Throttle Positions

control the settings of a throttle actuator. The remainder of

the requirements specification for the CCS is given by an object

communications diagram (OCD) that decomposes the system into a

set of objects that exchange messages. The OCD of most

interest, shown in Figure V-2, contains all the leaf-level

objects that compose the CCS, and includes the devices in the

context diagram.

72

Cruise
Control
Lever

Cruise
Control
Lever

Brake
Sensor

Brake

Engine
Sensor

Engine

Cruise
Controller

Speed
Controller

Throttle
Actuator

Current
Speed

Shaft
Shaft

Rotation
Sensor

Lever
Interrupts

&
Lever

Positions

Brake
State

Engine
State

Throttle
Positions

Shaft
Rotation
Interrupts

OFF

ACCEL

RESUME
CRUISE

BRAKE_RELEASED

BRAKE_PRESSED

ENGINE_ON

ENGINE_OFF

SET

GET_REQUESTGET_REPLY

Throttle

SET

INCREASE_ON

INCREASE_OFF

MAINTAIN_ON

MAINTAIN_OFF

RESUME_ON

RESUME_OFF

SELECT

CLEAR

REACHED_SPEED

Figure V-2. Object Communication Diagram For The Cruise
 Control System

For this case study, a requirements model represents the OCD

with some extensions. The extended, requirements model is

implemented as a set of fact templates using CLIPS. Figure V-3

illustrates the CLIPS representation of the requirements model.

For devices, the name, count, direction, and associated-object

73

OBJECT

name : SYMBOL
number : STRING
count : INTEGER (default 1)
type : enum (device-input |
 device-output |
 data-abstraction |
 control
 algorithm |
 unknown)
enabled-by : enum (interrupt |
 timer |
 access |
 object |
 nothing |
 unknown)
execution-time : enum
 (bounded |
 indeterminate |
 unknown)
importance : enum (low |
 high |
 normal)
period : FLOAT
status : enum (allocated |
 shared |
 unallocated)

MESSAGE

name : SYMBOL
from : SYMBOL
to : SYMBOL
synchronization : enum
 (required |
 none)
coupled-with : SYMBOL
importance : enum (low |
 high |
 normal)
status : enum (allocated |
 shared |
 unallocated)
parameters : list of SYMBOLS

DEVICE

name : SYMBOL
count : INTEGER (default 1)
direction: enum (Input | Output)
life: enum (Active | Passive)
stimulus : enum (time | demand)
associated-object : SYMBOL

INPUT

name : SYMBOL
device : SYMBOL
status: enum (allocated
 | unallocated)
l

OUTPUT

name : SYMBOL
device : SYMBOL
status: enum (allocated
 | unallocated)
l

INTERRUPT

name : SYMBOL
device : SYMBOL
status: enum (allocated
 | unallocated)
l

Figure V-3. Requirements Model

attributes come directly from the OCD. Three attributes extend

the device model: 1) life indicates whether a device generates

interrupts or not, 2) stimulus indicates whether a device must

be accessed periodically or on demand, and 3) period gives the

frequency with which a periodic device must be accessed. For

objects, the name, number, and count attributes come from the

OCD. Extensions enable a user to specify additional information

about an object. For example, the type attribute allows the

object to be classified; the enabled-by attribute provides a

description of external stimulus required to trigger the object

(where the object is enabled by another object, the enabler

attribute names the enabling object). The user can also specify

whether the execution time for the object is known to be bounded

or whether the execution time cannot be determined because the

object depends on varying, external conditions. The importance

attribute allows an analyst to identify objects with processing

of greater or lesser importance than other objects.

The message entity takes the attributes name, to, and from

directly from the OCD. Some extensions enable an analyst to

provide additional information. Messages can be assigned

greater or lesser importance. An analyst can also identify

messages that must be accepted before the sending object can

continue processing. For example, in the CCS, messages sent

from the Cruise-Controller to the Speed-Controller must be

accepted before the Cruise-Controller continues processing

because these messages are issued during transitions in a

finite-state machine. The coupled-with attribute allows an

analyst to identify messages that are paired with other

messages. For example, in the CCS, the GET-REQUEST and

GET-REPLY messages to and from the Current-Speed object are

coupled because one messages replies the other.

The other portions of the requirements model used in the CCS

example describe inputs, outputs, and interrupts. The

74

attributes for these entities come directly from the context

diagram and the OCD. The directed arrows in Figure V-3 show

which entities reference other entities. This simple,

requirements model, while not sufficient for the system

envisioned in Section IV, suffices for the CCS example.

In the example, an instance of the requirements model that

corresponds to the CCS shown in Figure V-2 is used. Rather than

address the elicitation of unspecified requirements for the CCS,

the instantiation of the model is assumed to be complete. For

75

QUEUE

name : SYMBOL
task : SYMBOL

ENCAPUSLATION

task : SYMBOL
object : SYMBOL
reason : STRING
l

REFERENCE

task : SYMBOL
object : SYMBOL

DATA

from : SYMBOL
to : SYMBOL
data : SYMBOL

EVENT

from : SYMBOL
to : SYMBOL
type : enum (external | timer |
 internal)
name : SYMBOL

LOOSELY-COUPLED-MESSAGE

from : SYMBOL
to : SYMBOL
message : SYMBOL
queue : SYMBOL

TASK

name : SYMBOL
type : enum
(asynchronous-device-input |
 periodic-device-input |
 asynchronous-device-output |
 periodic-device-output |
 control | user-role |
 resource-control |
 periodic-internal |
 asynchronous-internal |
asynchronous-periodic-internal
| background)|
 period : FLOAT
priority : enum (low |
 high |
 normal)

TIGHTLY-COUPLED-MESSAGE

from : SYMBOL
to : SYMBOL
message : SYMBOL
reply : SYMBOL

COMBINED-TCM

from : SYMBOL
to : SYMBOL
message : SYMBOL
parameters : list of SYMBOLs

COMBINED-LCM

from : SYMBOL
to : SYMBOL
message : SYMBOL
queue : SYMBOL
parameters : list of SYMBOLs

Figure V-4. Design Model

the Engine Sensor, Brake Sensor, and Throttle Actuator, 100 ms

periods are used, and the corresponding objects are enabled by a

timer. The Cruise Control Lever and Shaft objects are enabled

by interrupts, the Current Speed and Cruise Controller objects

by access, and the Speed Controller object by the Cruise

Controller object. The Cruise Controller object is assigned a

high importance because none of the external events affecting

the CCS can be missed. Since the CCS must match the external

speed of the vehicle to internal goals, the Speed Controller

object has an indeterminate execution time.

In addition to completely specified requirements, other

assumptions hold for the CCS example. A specific, target

environment is assumed. The design will execute on a single

processor, and the CCS communicates with no other subsystem.

The underlying operating system is assumed to support four

inter-task communication mechanisms: signals, first-in,

first-out queues, shared-memory, and remote-procedure calls.

Two other assumptions hold. First, the designer desires, for

convenience, to compress parameterless messages between pairs of

tasks into single messages that contain a type parameter.

Second, the expert system should use a reasonable naming scheme

to automatically assign human-readable names to the design

elements that are created. These assumptions avoid the need for

target environment elicitation during the CCS example.

Before discussing the heurisitics used to create a

high-level, design for the CCS, the design model must be

described. The design model, shown in Figure V-4, is

implemented in CLIPS using facts templates. The main entity is

the task (in the example considered here, module structuring is

not addressed). Task attributes include a type, an optional

period, and a priority. Each task includes an interface that

consists potentially of queues, events, data, and messages (both

loosely- and tightly-coupled). These components of the

76

interface may be input to or output from a task. In addition,

each task may enclose, or encapsulate, objects from the

requirements model, and may reference other objects that are not

enclosed in any task. In Figure V-4, the directed arcs show

which entities in the design model refer to other entities.

Each directed arc that is drawn wide, and not connected to

another entity in the design model, refers to an entity in the

requirements model. The design model serves for the purposes of

the CCS example, but is not adequate for the more ambitious

expert system outlined in Section IV.

The CCS requirements specification is transformed into a

design by making a series of decisions encoded as CLIPS rules.

The necessary decisions are grouped into classes with multiple

rules in each class. A class of decisions is represented as a

CLIPS module. Design process knowledge is represented by

77

R1: if an object is a device input object and
 the associated device is Active
 then generate an asynchronous device input task

R2: if an object is a device input object and
 the associated device is Passive and
 the associated device is Polled
 then generate a periodic device input task

R4: if an object is a device output object and
 the associated device is Passive and
 the associated device is not accessed on demand
 then generate a periodic device output task

R5: if an object is a control object
 then generate a control task

R9: if an objectA is an algorithm object and
 the objectA is enabled by another objectB and
 objectA has an indeterminate execution time
 then generate an asynchronous-periodic internal task

Figure V-5. Active-Object-Identification Rules Used In The CCS
 Example

applying each class of decisions in a specific order. Within

each class, the order of rule execution is unconstrained. For

the CCS example, six classes of decisions were applied in the

following order: 1) active-object identification, 2)

passive-object assignment, 3) active-object cohesion, 4)

task-interface-message mapping, 5) timer, interrupt, and data

mapping, and 6) convenient-message combination. Only the rules

needed to generate a design for the CCS are coded in CLIPS for

each class.4

Five rules, corresponding to Appendix A.1 rules R1, R2, R4,

R5, and R9, are needed to identify active objects from the CCS

requirements model. These rules are given in simple form in

Figure V-5. Rule R1 generates a task for each asynchronous,

4 A more complete set of rules is proposed in Appendix A. Rule numbers in the main text
are keyed to those given in the appendix. The reader should understand that most of the rules in
Appendix A, proposed as a result of theoretical analysis, have yet to be verified.

78

R2: if an objectA is a data-abstraction or algorithm object
 and
 objectA is not yet allocated within a task and
 objectA receives messages from multiple objects and
 the sending objects are allocated to distinct tasks
 then denote that the objectA is shared between tasks

R3: if an objectA is shared and
 objectA receives a message from an objectB and
 objectB is allocated to a taskJ
 then denote that taskJ accesses objectA.

Figure V-6. Passive-Object-Assignment Rules Used In The CCS
 Example

R1: if taskJ and taskK (J<>K) have equal importance
 and resonating periods
 then merge the tasks into a single task

Figure V-7. The Active-Object-Cohesion Rule Used In The CCS
 Example

input device. In the CCS example, the Cruise Control Lever and

the Shaft are such devices. Rule R2 identifies all polled,

input devices (Brake and Engine) and generates a task for each.

Rule R4 generates a task for each output device that is not

accessed on demand (that is, must be periodically strobed).

This rule applies to the Throttle object and the Throttle

Actuator device in the CCS example. Rule R5 creates a task for

each control object; only the Cruise Controller qualifies in the

CCS.

The final rule, R9, generates an asynchronous-periodic task

(that is, a task started by some event and running periodically

until disabled) for algorithm objects with an indeterminate

execution time that are enabled by some other object. In the

CCS, this applies only to the Speed Controller. Appendix B.1.1

79

CREATE-QUEUE: if no queue exists for taskJ and
 taskJ includes an objectA receiving a messageM
 and messageM is not of high importance
 and messageM does not require synchronization
 then create an input queue for taskJ

R1: if taskJ includes objectJ and taskK includes objectK
 (J<>K)
 and objectJ receives messageM from objectK and
 messageM is not of high importance and
 messageM does not require synchronization and
 an input queueQ exists for taskK
 then allocate messageM as a loosely-coupled message from
 taskK to queueQ of taskJ

R2: if taskJ includes objectJ and taskK includes objectK
 (J<>K)
 and objectJ receives messageM from objectK and
 messageM is not of high importance and
 messageM requires synchronization and
 messageM is not coupled with another message
 then allocate messageM as a tightly-coupled message from
 taskK to taskJ

Figure V-8. Rules For Mapping Messages To Task Interfaces As
 Used In The CCS Example

shows the CLIPS decisions reached for the CCS during the active

object identification step.

After a candidate set of tasks are generated for active

objects, passive objects are assigned to tasks. (Although this

ordering of design decisions works in the current example,

assigning passive objects to tasks should be deferred until

after tasks are combined, using active-object-cohesion rules,

because some of the tasks to which passive objects are assigned

might actually be eliminated.) For the CCS example only two

rules are necessary, as shown in Figure V-6. Rule R2 simply

identifies which passive objects are shared. Rule R3 ensures

that the correct tasks are assigned references to shared,

passive objects. In the CCS example, the data-abstraction

object named Current Speed is accessed by two objects, Shaft and

Speed Controller, previously allocated to separate tasks; thus,

Current Speed becomes a shared object, as shown in Appendix

B.1.2.

 The next set of design decisions applied to the CCS attempts

to merge tasks using a set of cohesion rules. Only one cohesion

80

R1: if a task includes an object that is activated by a timer
 then allocate an input event of type timer to the task
 interface

R2: if a task includes an object that is activated by an
 interrupt
 then allocate an input event of type interrupt to the
 task interface

R3: if a task includes an object that receives data from a
 device
 then allocate the input data to the task interface

R4: if a task includes an object that sends data to a device
 then allocate the output data to the task interface

Figure V-9. Rules Used In The CCS Example To Allocate Timers,
 Interrupts, And Data To Task Interfaces

rule, shown in Figure V-7, applies to the CCS example. The

Brake and Engine periodic tasks have a comparable importance and

a resonating (in fact the same) period and, so, are merged into

a single task, as shown in Appendix B.1.3.

The next step in the design process requires that the

interface for each task be specified. First, messages are

allocated to each task and then data, timers, and interrupts are

assigned. Although these decisions are taken in separate steps

for the CCS example, merging them into a single step seems

possible. Figure V-8 shows the rules for task-interface-message

mapping used in the CCS example. The first rule, CREATE-QUEUE,

81

CLCM-1: if two distinct, parameterless, loosely-coupled
 messages are sent
 from taskJ to queueQ of taskK (J<>K)
 then create a combined, loosely-coupled message from
 taskJ to queueQ of taskK

CLCM-2: if a combined, loosely-coupled message exists
 for taskJ, taskK, and queueQ (J<>K) and
 a loosely-coupled, parameterless messageM exists
 from taskJ to queueQ of taskK
 then merge messageM into the combined, loosely-coupled
 message

CLCM-1: if two distinct, parameterless, tightly-couple
 messages are sent
 from taskJ to taskK (J<>K)
 then create a combined, tightly-coupled message from
 taskJ to taskK

CLCM-2: if a combined, tightly-coupled message exists
 for taskJ and taskK (J<>K) and
 a tightly-coupled, parameterless messageM exists
 from taskJ to taskK
 then merge messageM into the combined, tightly-coupled
 message

Figure V-10. Rules Used In The CCS Example To Compress The
 Types Of Messages Exchanged Between Tasks

establishes an input queue for tasks that will receive

loosely-coupled messages. The second rule, R1, actually

allocates appropriate messages between objects as

loosely-coupled messages from the sending task into the queue of

the receiving task. The final rule, R2, allocates appropriate

messages between objects as tightly-coupled messages, without

reply, between tasks. The results of applying these rules to

the CCS problem are given in Appendix B.1.4.

The rules for mapping data, interrupts, and timers are

presented in Figure V-9. These simple rules provide the

housekeeping needed to map device interrupts, input and output

data, and system timers to the correct task interfaces. The

results of applying these rules to the CCS requirements

specification are shown in Appendix B.1.5.

82

Brake+Engine_Input

Cruise-Control-Lever_Input

Cruise-Controller_ControlQueue43

Shaft_Input

Speed-Controller_Algorithm

Throttle_Output

Current-Speed
Brake+Engine_Input_Events

Engine-StateBrake-State

Timer

Lever-Positions

Lever-Interrupts

Cruise-Control-Lever_Input_Events

Shaft-Rotation-Interrupts

Timer

SET

Throttle-Positions

REACHED_SPEED

Speed-Controller_Algorithm_Commands

Brake Engine

B.2.1

Cruise-Control-Lever

B.2.2

Shaft

B.2.3

Throttle

B.2.4

Cruise-Controller

B.2.5

Speed-Controller

B.2.6

Figure V-11. High-Level, Concurrent Design For The Cruise
 Control System

The final design step applied to the CCS example simply finds

instances of parameterless messages flowing between pairs of

tasks and then compresses those messages into single messages

with a parameter to identify which of the original messages is

intended.5 This approach tends to reduce the number of messages

shown on task architecture diagrams. The rules for

accomplishing the compression are shown in Figure V-10. One

pair of rules applies to loosely-coupled messages and the other

applies to tightly-coupled messages without reply. In each

case, one rule identifies the need for compression and creates a

compressed message, while the second rule combines specific

messages into the appropriate, compressed message. The results

of executing these rules for the CCS application are shown in

Appendix B.1.6.

Appendix B contains the task specifications (B.2.1 to B.2.6)

produced by a CLIPS implementation of the foregoing rules

applied to the cruise-control system. A task architecture

diagram illustrating the high-level design generated by the

expert system is shown in Figure V-11. Six tasks (represented

as parallelograms) are used in the design. In the lower, right

corner of each task icon a reference to the appropriate task

description in Appendix B is shown. The seven objects from the

requirements specification are included in the design as modules

(represented as rectangles). Modules shown within a task are

encapsulated by that task; shared modules (only Current-Speed in

the example) are depicted outside of any task with directed arcs

showing which tasks write and read to the modules. Timers and

interrupts are drawn as directed, lightening flashes. Input and

output data to the tasks appear in the form of directed arcs

coming from or going to, respectively, the outside of each

applicable task. The Cruise-Controller_Control task processes a

5 These rules are not included in Appendix A because they are not essential to create
concurrent designs.

83

queue (Queue43) which receives loosely-coupled messages from

three tasks. The Cruise-Controller_Control task also sends

tightly-coupled messages (without reply) to the Speed-Controller

_Algorithm task. The Speed-Controller_Algorithm task sends

tightly-coupled SET messages to the Throttle_Output task.

While this cruise-control example demonstrates that

concurrent designs can be generated using heuristics represented

as rules in an expert system, a number of the research problems

identified in Section IV have yet to be addressed. First, the

example does not deal with the elicitation of requirements

information, nor with the elicitation of target-environment

descriptions. Further, the case study does not address the

generation of alternative designs based on target-environment

descriptions. The example also does not include techniques for

identifying unallocated requirements entities; nor does the

example exercise the majority of the rules (see Appendix A) for

identifying and merging active objects. The issue of task

inversion remains to be addressed. Module structuring rules are

not included, especially those needed to define module

interfaces.

Other research issues, though addressed in the example, need

further consideration. For example, only ad hoc knowledge of

the design process is applied to the case study. Phases in the

design process need clear identification so that design rules

can be partitioned accordingly and so that the order of design

phases can be investigated independently. Another shortcoming

of the approach used in the case study involves the models. The

target-environment description model is not addressed at all.

While a requirements-specification model and a design model are

defined for the example, several improvements are necessary.

These models might better be represented using an

object-oriented approach, rather than with the structured facts

used in the case study. Using object-oriented models should

84

result in less cluttered antecedents for the design rules.6 In

addition, navigating through the models, as required in some

cases, can be better accomplished using links within the model,

rather than using rules.7 No matter how each model is

represented, more thought must be given to the semantics of the

models. Neither the requirements-specification model nor the

design model used in the example is complete. For example, the

only means to explain design decisions is to review the stream

of consciousness output by the CLIPS program. A better

explanation facility is needed. In the

requirements-specification model, the EDLC object communication

diagrams are not represented faithfully. No provision exists in

the requirements-specification model for representing subsystems

(and no rules handle interfaces between subsystems). Finally,

the design model requires a strategy for naming design elements

as they are generated. In the example, a single, ad hoc naming

scheme is used.

VI. Conclusions

Reuse has long been recognized as a key to improving the

productivity of software developers and the quality of software

products. Unfortunately, a large set of difficult problems

inhibit software reuse. First among these is the low population

of reusable software components, particularly architectures into

which such components can be fitted. This problem bars progress

in the generation of software from domain models.

The present paper proposed to reuse design knowledge,

represented within an expert system, to generate concurrent

designs from object-oriented, target specifications output from

6 Using structured rules requires that each attribute needed in the rule consequent be
matched in the antecedent even where those attributes play no part in the rule conditions. This
tends to obscure the conditions that trigger the rule.
7 Using rules to chain through links in a graph can become tediously complicated.

85

a domain model. An architecture for a designer’s expert

assistant was described. The architecture begins with object

communication diagrams (OCDs) that form a part of the domain

modeling language included in the Evolutionary Domain Life Cycle

(EDLC). After eliciting missing information about the

requirements and about the target-environment, the designer’s

expert assistant applies design-decision heuristics and

design-process knowledge to transform an OCD into a concurrent

design. This approach should improve the productivity of novice

designers and should also increase the consistency of concurrent

designs. For experienced designers, an expert assistant can

facilitate the generation of alternative designs. Using the

proposed approach, a repository of designs for families of

systems can be populated.

A case study demonstrated the feasibility of the proposed

approach. The OCD for a cruise-control system was transformed

into a concurrent design using a CLIPS implementation. The

example investigated: 1) a representation for the requirements

and design model, 2) rules for making design decisions, and 3)

methods for representing design-process knowledge. During the

investigation, a number points became clear. First,

object-oriented methods can provide a better representation of

the requirements and design models then can the fact-based

approach used in the example. Second, design decisions should

be classified so that a potentially large rule set can be

partitioned for easier comprehension and maintenance. Within

each class of design decisions, the order of rule evaluation

should be made irrelevant, if possible. Third, design-process

knowledge should be implemented as an ordering among the classes

of design decisions.

A number of issues were not addressed during the case study.

Elicitation of requirements and target-environment information

were not investigated. Interfaces between the subsystem under

86

design and other subsystems were not considered. Alternative

designs were not permitted. Only a single, ad hoc, naming

scheme was implemented to identify design elements. Although

the case study verified only a subset of possible design rules,

a more complete set of heuristics was given in Appendix A.

A designer’s expert assistant could lead to several

advantages. First, when coupled with a domain modeling and

analysis method such as the EDLC, a design generator can bridge

the gap between a problem analysis and a high-level design for a

concurrent solution. Once a design exists, the design model can

be subjected to various forms of static and dynamic analysis

using automated methods to assess the function and performance

of the design. Third, a generated design will be complete and

consistent relative to the requirements specification, or else

any omission from the requirements specification will be known

explicitly. Fourth, a designer’s expert assistant will codify

and disseminate good design practice in a form that can help

inexperienced designers create acceptable designs for concurrent

software. The resulting designs should be produced faster and

with fewer mistakes than would otherwise be the case. Fifth,

producing designs quickly should facilitate early detection of

flaws in the domain model. The earlier in the development

life-cycle that errors are found, the cheaper it will be to

correct them. Flaws in a domain model will be even more

expensive than flaws in the analysis for a single system because

the analysis within a domain model is reused more readily in

many development projects. Sixth, producing alternative designs

can help a designer to consider the ramifications of various

decisions on the cost and performance of the resulting software.

Without automated assistance, the cost of generating alternative

designs can be prohibitive. Finally, automated assistance can

help to generate a population of designs that can be reused on

future developments.

87

Every problem faced by designers of concurrent software is

not yet amenable to an automated solution; however, a number of

design heuristics appear adaptable to encoding within an expert

system. More investigation is needed to determine how best to

represent requirements and designs, to adapt and verify

additional design heuristics, to distill design-process

knowledge into a form that can guide design decision-making, and

to define factors that lead designers to select among

alternatives for specific decisions.

VII. References

[AGHA90] G. Agha, "Concurrent Object Oriented Programming,"
Communications of the ACM, September 1990, pp.
125-141.

[AGHA89] G. Agha, "Foundational Issues in Concurrent
Computing,"

SIGPLAN NOTICES, April 1989, pp. 60-65.

[AGHA87] G. Agha and C. Hewitt, "Concurrent Programming Using
Actors," in Object Oriented Concurrent Programming,
The MIT Press, Cambridge, Mass., 1987.

[AGHA87a] G. Agha and C. Hewitt, "Actors: A Conceptual
Foundation

for Concurrent Object Oriented Programming," in
Research Directions in Object Oriented Programming,
The MIT Press, Cambridge, Mass., 1987.

[AGHA86] G. Agha, Actors: A Model of Concurrent Computation in
Distributed Systems, The MIT Press, Cambridge, Mass.,
1986.

[ARAN93] G. Arango, E. Shoen, and R. Pettengill, "A Process for
 Consolidating and Reusing Design Knowledge," in

Proceedings of the 15th International Conference On
Software Engineering, Baltimore, Maryland, May 17-21,
1993, pp. 231-242.

[ARAN89] G. Arango, "Domain Analysis - From Art Form To
Engineering Discipline," ACM, 1989, pp. 247-255.

88

[BALZ83] R. Balzer, T.E. Cheatham, Jr., and C. Green, "Software
Technology in the 1990’s: Using a New Paradigm,"
Computer, November 1983, pp. 39-45.

[BARS91] D. Barstow, "Automatic Programming for Device-Control
Software," in Automating Software Design, M.R. Lowry
and R.D. McCartney (eds.), AAAI Press, Menlo Park,
California, 1991, pp. 123-140.

[BARS85] D. Barstow, "Domain-Specific Automatic Programming,"
IEEE Transactions On Software Engineering, Vol. SE-11,
No. 11, November 1985, pp. 1321-1336.

[BIBE91] W. Bibel, "Toward Predictive Programming," in
Automating Software Design, M.R. Lowry and R.D.
McCartney (eds.), AAAI Press, Menlo Park, California,
1991, pp. 405-424.

[BIGG87] T. Biggerstaff and C. Richter, "Reusability Framework,
Assessment, and Directions," IEEE Software, March

1987,
pp. 41-49.

[BOEH87] B. Boehm, "Improving Software Productivity," Computer,
September 1987, pp. 43-57.

[BOLO92] G. Boloix, P.G. Sorenson, and J.P. Tremblay,
"Transformations using a meta-system approach to
software development," Software Engineering Journal,
November 1992, pp. 425-437.

[BOOC91] G. Booch, Object Oriented Design With Applications,
Benjamin/Cummings, Redwood City, California, 1991.

[BOOC86] G. Booch, "Object-Oriented Development," IEEE
Transactions On Software Engineering, Vol. SE-12,
No. 2, February 1986, pp. 211-221.

[BROO87] F.P. Brooks, Jr., "No Silver Bullet Essence and
Accidents of Software Engineering," Computer, April
1987, pp. 10-19.

[CALD91] G. Caldiera and V. Basili, "Identifying and Qualifying
Reusable Software Components," COMPUTER, February

1991,
pp. 61-69.

[CAVA89] M. Cavaliere, "Reusable Code at the Hartford Insurance
Group," in Software Reusability Volume II Applications
and Experience, ACM Press, 1989, pp. 131-141.

89

[COAD92] P. Coad, "Object-Oriented Patterns," Communications of
the ACM, Vol. 35 No. 9, September 1992, pp. 152-159.

[COAD91] P. Coad and E. Yourdon, Object-Oriented Analysis,
Yourdon Press, Englewood Cliffs, NJ, 1991.

[COX92] B. Cox, The Economics of Software Reuse, a lecture
given in INFT 821 at George Mason University on
October 13, 1992.

[COYN90] R.D. Coyne, M.A. Rosenman, A.D. Radford, M.
Balachandran, and J.S. Gero, Knowledge-Based Design
Systems, Addison-Wesley, Reading, Massachusetts,
1990.

[CURT89] B. Curtis, "Cognitive Issues in Reusing Software," in
Software Reusability Volume II Applications and
Experience, ACM Press, 1989, pp. 131-141.

[DEMAR78] T. DeMarco, Structured Analysis and Specification,
Prentice Hall, Englewood Cliffs, New Jersey, 1978.

[DILL90] L. K. Dillon, "Verifying General Safety Properties of
Ada Tasking Programs," IEEE Transactions on Software
Engineering, January 1990, pp. 51-63.

[ESTR86] G. Estrin, R.S. Fenchel, R.R. Razouk, and M.K. Vernon,
"SARA (System ARchitects Apprentice): Modeling,
Analysis, and Simulation Support for Design of
Concurrent Systems," IEEE Transactions On Software
Engineering, Vol. SE-12, No. 2, February 1986, pp.
293-311.

[FICK92] S. Fickas and R. Helm, "Knowledge Representation and
Reasoning in the Design of Composite Systems," IEEE
Transactions On Software Engineering, Vol. 18,
No. 6, June 1992, pp. 470-482.

[FICK90] S. Fickas and R. Helm, A Transformational Approach to
Composite System Specification, University of Oregon,
CIS-TR-90-19, November 1990.

[FIKE85] R. Fikes and T. Kehler, "The Role Of Frame-Based
Representation In Reasoning," Communications of the
ACM, Vol. 28, No. 9, September 1985, pp. 904-920.

[FISC92] G. Fischer, A. Girgensohn, K. Nakakoji, and D.
Redmiles, "Supporting Software Designers with
Integrated Domain-Oriented Design Environments," IEEE

90

Transactions On Software Engineering, Vol. 18, No. 6,
June 1992, pp. 511-522.

[GIAR93] J.C. Giarratano. et al, CLIPS Version 6.0 Reference
Manuals, National Aeronautics and Space Agency,
Johnson Space Center, Houston, Texas, 1993.

[GIAR89] J. Giarratano and G. Riley, Expert Systems Principles
and Programming, PWS-Kent, Boston, Mass., 1989.

[GOMA93] H. Gomaa, "A Resue-Oriented Approach For Structuring
And Configuring Distributed Applications," Software
Engineering Journal, March 1993, pp. 61-71.

[GOMA93a] H. Gomaa, Software Design Methods for Concurrent and

Real-Time Systems, Addison-Wesley, Reading
Massachutsetts, 1993.

[GOMA92] H. Gomaa, "An Object-Oriented Domain Analysis and
Modeling Method For Software Reuse," Proceedings of
the Hawaii International Conference on System
Sciences, January 1992.

[GOMA91] H. Gomaa, L. Kerschberg, C. Bosch, V. Sugumaran, and
 Tavakoli, " A Prototype Software Engineering

Environment for Domain Modeling and Reuse,"
Proceedings of the Fourth Annual Workshop on Software
Resue, November 1991.

[GOMA84] H. Gomaa, "A Software Design Method For Real-Time
Systems," Communications of the ACM, Vol. 27 No.9,
September 1984, pp. 938-949.

[GONZ93] A.J. Gonzalez and D.D. Dankel, The Engineering of
Knowledge-Based Systems Theory and Practice,
Prentice-Hall, Englewood Cliffs, N.J., 1993.

[HARE90] D. Harel, et al., "STATEMATE: A Working Environment
for the Development of Complex Reactive Systems," IEEE
Transactions On Software Engineering, Vol. 16 No. 4,
April 1990, pp. 403-413.

[HAYE85] F. Hayes-Roth, "Ruled-Based Systems," Communications
of the ACM, Vol. 28, No. 9, September 1985, pp.
921-932.

[HSIE93] D. Hsieh, "A logic to unify semantic-network knowledge
systems with object-oriented database models," Journal
Of Object-Oriented Programming, Vol. 6 No. 2, May
1993, pp. 55-67.

91

[ISCO88] N. Iscoe, "Domain-Specific Reuse: An Object-Oriented
and Knowledge-Based Approach," an updated version of
an article in the Proceedings of the Workshop on
Software Reuse held in October 1987, pp. 299-308.

[JACO91] I. Jacobson and F. Lindstrom, "Re-engineering of Old
Systems to an Object Oriented Architecture," OOPSLA
’91 onference Proceedings, October 1991, pp. 340-350.

[JONE84] T. Jones, "Reusability in Programming: A Survey of the
State of the Art," IEEE Transactions on Software
Engineering, September 1984, pp. 488-493.

[KAIN94] H. Kaindl, "Object-oriented approaches in software
engineering and artificial intelligence," Journal Of
Object-Oriented Programming, Vol. 5 No. 8, January
1994, pp. 38-44.

[KANT91] E.Kant, F. Daube, W. MacGregor, and J. Wald,
"Scientific Programming by Automated Synthesis," in
Automating Software Design, M.R. Lowry and R.D.
McCartney (eds.), AAAI Press, Menlo Park, California,
1991, pp. 169-206..

[KARI88] J. Karimi and B.R. Konsynski, "An Automated Software
Design Assistant," IEEE Transactions On Software
Engineering, Vol. 14, No. 2, February 1988, pp.
194-210.

[LANG84] R. Langergan and C. Grasso, "Software Engineering with
Reusable Designs and Code," IEEE Transactions on
Software Engineering, September 1984, pp. 498-501.

[LENZ87] M. Lenz, et al., "Software Reuse Through Building
Blocks," IEEE Software, July 1987, pp. 34-42.

[LIM92] E-P. Lim and V. Cherkassky, "Semantic Networks and
Associative Databases," IEEE Expert, August 1992, pp.
31-40.

[LOR91] K.E. Lor and D.M. Berry, "Automatic Synthesis of SARA
Design Models From Systems Requirements," IEEE
Transactions On Software Engineering, Vol. 17 No. 12,
December 1991, pp. 1229-1240.

[LOWR92] M. Lowry, "Software Engineering in the Twenty-First
Century," AI Magazine, Vol. 14 No. 3, Fall 1992, pp.
71-78.

92

[LUBA91] M.D. Lubars, "The ROSE-2 Strategies for Supporting
High-Level Software Design Reuse," in Automating
Software Design, M.R. Lowry and R.D. McCartney (eds.),
AAAI Press, Menlo Park, California, 1991, pp. 93-118.

[MAGE93] J. Magee, N. Dulay, and J. Krammer, "Process Parallel
Programming: A Constructive Development Environment,"
an unpublished manuscript, 1993, 19 pages.

[MARQ92] D. Marques, G. Dallemagne, G. Klinker, J. McDermott,
and D. Tung, "Easy Programming Empowering People to
Build Their Own Applications," IEEE Expert, June 1992,
pp. 16-29.

[MATSU84] Y. Matsumoto, "Some Experience in Promoting Reusable
Software Presentation in Higher Abstraction Levels,"
IEEE Transactions on Software Engineering, September
1984, pp. 502-512.

[MILL92] K. Mills, Requirements Engineering for Software Reuse,
a paper produced for George Mason University doctoral
seminar INFT 851, November 1992.

[MITH94] R. Mithani, "Modeling databases with objects and
rules," Object Magazine, Vol. 3 No. 5, January 1994,
pp. 58-60.

[MEYE88] B. Meyer, Object-Oriented Software Construction,
Prentice-Hall, Hemel Hempstead, United Kingdom, 1988.

[MEYE87] B. Meyer, "Reusability: The Case for Object-Oriented
Design," IEEE Software, March 1987, pp. 50-64.

[NEIG89] J. Neighbors, "DRACO: A Method for Engineering
Reusable Software Systems," in Software Reliability
Volume I Concepts and Models, ACM Press, 1989, pp.
295-319.

[NEIG84] J. Neighbors, "The Draco Approach to Constructing
Software from Reusable Components," IEEE Transactions
On Software Engineering, Vol 10. No. 5, September
1984, pp. 564-574.

[NIEL88] K. Nielsen and K. Shumate, Designing Large Real-Time
Systems with Ada, McGraw-Hill, New York, New York,
1988.

93

[NIEL87] K. Nielsen and K. Shumate, "Designing Large Real-Time
Systems with Ada," Communications of the ACM, Vol. 30
No. 8, August 1987, pp. 695-715.

[NOVA92] G. Novak, et al., "Negotiating Interfaces for Software
Reuse," IEEE Transactions on Software Engineering,
July 1992, pp. 646-652.

[ODEL93] J.J Odell, "Specifying requirements using rules,"
Journal Of Object-Oriented Programming, Vol. 6 No. 2,
May 1993, pp. 20-24.

[ORNB93] S.B. Ornburn and R.J. LeBlanc. Jr., "Building,
Modifying, and Using Component Generators," in
Proceedings of the 15th International Conference On
Software Engineering, Baltimore, Maryland, May 17-21,
1993, pp. 391-402.

[PIDD92] M. Pidd, "Guidelines for the design of data driven
generic simulators for specific domains," Simulation,
October 1992, pp. 237-243.

[PRIE87] R. Prieto-Diaz and P. Freeman, "Classifying Software
for Reusability," IEEE Software, January 1987, pp.
6-16.

[PRIE87a] R. Prieto-Diaz, "Domain Analysis For Reusability,"
IEEE, 1987, pp. 23-29.

[RAMA86] C. Ramamoorthy, et al., "Programming in the Large,"
IEEE Transactions on Software Engineering, July 1986,
pp. 769-783.

[RASM93] D.W. Rasmus, "Taming the AI madness with object
methods," Object Magazine, Vol. 3 No. 4,
November-December, 1993, pp. 58-60.

[RETT93] M. Rettig, G. Simons, and J Thomson, "Extended
Objects," Communications of the ACM, Vol, 36 No. 8,
August 1993, pp. 19-24.

[RICE89] J. Rice and H. Schwetman, "Interface Issues in a
Software Parts Technology," in Software Reusability
Volume I Concepts and Models, ACM Press, 1989, pp.
125-139.

[RICH92] C. Rich and Y. Fedlman, "Seven Layers of Knowledge
Representation and Reasoning in Support of Software
Development," IEEE Transactions On Software
Engineering, Vol. 18 No. 6, June 1992, pp. 451-469.

94

[RICH88] C. Rich and R.C. Waters, "The Programmer’s Apprentice:
A Research Overview," Computer, Vol. 21, No. 11,
November 1988, pp. 10-25.

[RICH88a] C. Rich and R.C. Waters, "Automatic Programming: Myths
and Prospects," Computer, August 1988, pp. 40-51.

[RUMB91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen, Object-Oriented Modeling and Design,
Prentice-Hall, Englewood Cliffs, New Jersey,1991.

[SAGE90] A. Sage and J. Palmer, Software Systems Engineering,
John Wiley and Sons, 1990.

[SAND94] B. Sanden, Software Systems Construction With Examples
In Ada, Prentice Hall, Englewood Cliffs, New Jersey,
1994.

[SAND89] B. Sanden, "Entity-Life Modeling and Structured
Analysis in Real-Time Software Design - A Comparison,"
Communications of the ACM, Vol. 32, No. 12,
December 1989, pp. 1458-1466.

[SAND89a] B. Sanden, "An Entity-Life Modeling Approach To The
Design Of Concurrent Software," Communications of the
ACM, Vol. 32, No. 3, March 1989, pp. 330-343.

[SELB89] R. Selby, "Quantitative Studies of Software Reuse," in
Software Reusability Volume II Applications and
Experience, ACM Press, 1989, pp. 213-233.

[SETL92] D.E. Setliff and R.A. Rutenbar, "Knowledge
Representation and Reasoning in a Software Synthesis
Architecture," IEEE Transactions On Software
Engineering, Vol. 18, No. 6, June 1992, pp. 523-533.

[SETL91] D. Setliff, "On the Automatic Selection of Data
Structure and Algorithms," in Automating Software
Design, M.R. Lowry and R.D. McCartney (eds.), AAAI
Press, Menlo Park, California, 1991, pp. 207-226.

[SHA90] L. Sha and J.B. Goodenough, "Real-Time Scheduling
Theory and Ada," Computer, April 1990, pp. 53-62.

[SHLA92] S. Shlaer and S. J. Mellor, Object Lifecycles Modeling
the World in States, Yourdon Press, Englewood Cliffs,
NJ, 1992.

95

[SIMO86] H.A. Simon, "Whether Software Engineering Needs to Be
Artificially Intelligent," IEEE Transactions On
Software Engineering, Vol. SE-12 No. 7, July 1986, pp.
726-732.

[SMIT93] C.U. Smith and L.G. Williams, "Software Performance
Engineering: A Case Study Including Performance
Comparison with Design Alternatives," IEEE
Transactions On Software Engineering, Vol. 19 No. 7,
July 1993, pp. 720-741.

[SMIT91] D. R. Smith, "KIDS - A Knowledge-Based Software
Development System," in Automating Software Design,
M.R. Lowry and R.D. McCartney (eds.), AAAI Press,
Menlo Park, California, 1991, pp. 483-514.

[STAN84] T. Standish, "An Essay on Software Reuse," IEEE
Transactions on Software Engineering, September 1984,
pp. 494-497.

[SUGU93] V. Sugumaran, A Knowledge-Based Approach For
Generating Target System Specifications From A Domain
Model, Ph.D. dissertation, George Mason University,
Fairfax, Virginia, 1993.

[TSAI88] J.P. Tsai and J.C. Ridge, "Intelligent Support for
Specifications Transformation," IEEE Software,
November 1988, pp. 28-35.

[WARD85] P. Ward and S. Mellor, Structured Development for
Real-time Systems, Four Volumes, Prentice Hall,
Englewood Cliffs, New Jersey, 1985.

[WATE91] R.C. Waters and Y.M. Tan, "Toward a Design Apprentice:
Supporting Reuse and Evolution in Software Design,"
ACM SIGSOFT Software Engineering Notes, Vol. 16, No.
2, April 1991, pp. 33-44.

[WEBS88] D.E. Webster, "Mapping the Design Information
Representation Terrain," Computer, Vol. 21, No. 12,
December 1988, pp. 8-24.

[WIRF90] R. Wirfs-Brock and R. Johnson, "Surveying Current
Research in Object-Oriented Design," Communications of
the ACM, September 1990, pp. 104-124.

[WOOD87] S. Woodfield, et al., "Can Programmers Reuse
Software?" IEEE Software, July 1987, pp. 52-59.

96

[YAU86] S.S. Yau and J.P. Tsai, "A Survey of Software Design
Techniques," IEEE Transactions On Software
Engineering, Vol. SE-12 No. 6, June 1986, pp. 713-721.

[YOUR79] E. Yourdon and L.L. Constantine, Structured Design,
Prentice-Hall, Englewood Cliffs, NJ, 1979.

97

APPENDIX A. SOME PROPOSED DESIGN HEURISTICS EXPRESSED AS RULES

This appendix contains a set of design heuristics that might be applied to construct a
concurrent design for software from the OCD (object communication diagram) view of a target
specification generated from an EDLC (Evolutionary Domain Life Cycle) model. These
heuristics can also be applied to any OOA (object-oriented analysis) specification that can be
expressed using an OCD view. As with any heuristics that embody human knowledge, the rules
specified below do not represent a complete set of design knowledge (indeed, as described in the
main text, other design knowledge might include: design-process knowledge,
priority-assignment knowledge, task-inversion knowledge, and performance-evaluation
knowledge). In addition, further work is needed to verify and validate the proposed rules.

The rules are presented in five categories. Section A.1 contains rules intended to identify
active objects from the specification and to encapsulate those objects into various types of tasks.
Section A.2 presents rules for assigning passive objects to tasks. Section A.3 defines rules for
merging tasks. Section A.4 gives rules for mapping object messages to task interfaces. Section
A.5 contains rules for mapping timers, interrupts, and data to task interfaces.

A.1 Active Object Identification Rules

R1: if objecti is a Device Input Object and
 the device associated with objecti generates interrupts
then
 wrap objecti in an Asynchronous Device Input Task

R2: if objecti is a Device Input Object and
 the device associated with objecti is Passive and
 the device associated with objecti must be polled
then
 wrap objecti in a Periodic Device Input Task

R3: if objecti is a Device Output Object and
 the device associated with objecti generates interrupts
then
 wrap objecti in an Asynchronous Device Output Task

R4: if objecti is a Device Output Object and
 the device associated with objecti is Passive and
 the device associated with objecti must be strobed
then
 wrap objecti in a Periodic Device Output Task

98

R5: if objecti is a Control Object
then
 wrap objecti in a Control Task

R6: if objecti is a User Role Object
then
 wrap objecti in a User Role Task

R14: if objecti is a Device Output Object and
 the device associated with objecti is Passive and
 the device associated with objecti need not be strobed and
 objecti receives messages from more than one other object
then
 wrap objecti in a Resource Control Task

R8: if objecti is an Algorithm Object and
 objecti must execute periodically and
 objecti is not enabled by an objectj

then
 wrap objecti in a Periodic Internal Task

R9: if objecti is an Algorithm Object and
 objectj enables objecti and
 objecti has an indeterminate execution time
then
 wrap objecti in an Asynchronous Internal Task

R10: if objecti is an Algorithm Object and
 objectj enables objecti and
 objecti has a period
then
 wrap objecti in an Asynchronous-Periodic Internal Task

R11: if objecti is an Algorithm Object and
 objecti is not enabled by an objectj and
 objecti has an indeterminate execution time
then
 wrap objecti in a Background Task

99

A.2 Passive Object Assignment Rules

R1: if objecti is an Algorithm Object or a Data Abstraction Object and
 objecti is not encapsulated in a task and
 objecti is accessed from a single taskj

then
 encapsulate objecti in taskj

R2: if objecti is an Algorithm Object or a Data Abstraction Object and
 objecti is not encapsulated in a task and
 objecti is accessed from multiple tasks
then
 denote objecti as a shared object

R3: if objecti is shared and
 objecti receives a message from objectj and
 objectj is encapsulated in taskk

then
 denote that taskk references objecti

A.3 Active Object Cohesion Rules

R1: if taskj is a Periodic Device Input Task and
 taskk is a Periodic Device Input Task and
 the period of taskj resonates with the period of taskk and
 the importance of taskj is comparable with the importance of taskk

then
 merge taskj with taskk

R2: if taskj is a Periodic Device Output Task and
 taskk is a Periodic Device Output Task and
 the period of taskj resonates with the period of taskk and
 the importance of taskj is comparable with the importance of taskk

then
 merge taskj with taskk

R3: if taskj is a Periodic Internal Task and
 taskk is a Periodic Internal Task and
 the period of taskj resonates with the period of taskk and
 the importance of taskj is comparable with the importance of taskk and
 taskj and taskk are related functionally
then
 merge taskj with taskk

100

R4: if taskj is a Control Task and
 taskj receives messages from taskk and
 taskj receives messages from no other task and
 taskk is a Periodic Internal Task
then
 merge taskj and taskk a single Periodic Internal Task

R5: if taskj is a Control Task and
 taskj sends messages to taskk and
 taskk is an Asynchronous Internal Task and
 taskk must finish before taskj can continue
then
 merge taskj and taskk into a single Control Task

R6: if taskj is an Asynchronous-Periodic Internal Task and
 taskk is an Asynchronous-Periodic Internal Task and
 taskj is enabled by taski and
 taskk is enabled by taski and
 taskj and taskk are mutually exclusive
then
 merge taskj and taskk

A.4 Rules For Mapping Object Messages To Task Interfaces

To a large extent, the mapping of object messages to task interfaces depends upon the
messaging facilities supported by the target, run-time system. Most run-time systems provide
message queuing facilities between tasks to handle routine communications and also support a
synchronization mechanism that embodies inter-task procedure calls (i.e., tightly-coupled
messages, with reply). The existence of other forms of synchronization, such as tightly-coupled
messages, without reply, is less certain. When a design requires that some messages exceed
others in importance, several techniques might be available to support the requirements. For
example, a run-time system might facilitate priority message queuing between tasks. In other
run-time systems, multiple queues might be required (coupled to a message servicing discipline)
to achieve the same effect. In still other systems, a signalling mechanism might be available to
serve such needs.

The rules that follow assume that the run-time system supports: 1) loosely-coupled
message queues of a single priority, 2) tightly-coupled message passing, both with and without
reply, and 3) an inter-task signalling mechanism where signals are of equal priority. Design
heuristics to support other assumptions can be defined. In fact, part of the design process might
include selecting the messaging facilities available in the intended, run-time system and then
using an appropriate set of design rules for that portion of the design process devoted to defining
task interfaces.

101

R1: if taski receives messagem from taskj and
 the importance of messagem is normal and
 messagem requires no synchronization
then
 map messagem to a loosely-coupled interface from taskj to taski

R2: if taski receives messagem from taskj and
 the importance of messagem is normal and
 messagem requires synchronization and
 messagem is not coupled to another message
then
 map messagem to a tightly-coupled interface, without reply, from taskj

 to taski

R3: if taski receives messagem from taskj and
 the importance of messagem is normal and
 messagem requires synchronization and
 messagem is coupled to another messagen

then
 map messagem to a tightly-coupled interface, with reply, from taskj to taski and
 map messagen to the reply on the same interface from taski to taskj

R4: if taski receives messagem from taskj and
 messagem has no parameters and
 the importance of messagem is high
then
 map messagem to an internal event from taskj to taski

A.5 Rules for Mapping Interrupts, Timers, and Data to Task Interfaces

R1: if taski encapsulates an objecti and
 objecti is enabled by a timer and
then
 map a system timer event to the event input interface for taski

R2: if taski encapsulates an objecti and
 objecti is enabled by an interrupt from
 a devicei associated with objecti

then
 map the interrupt from devicei to an external event input for taski

102

R3: if taski encapsulates an objecti and
 objecti is associated with a devicei and
 devicei provides system inputs
then
 map the input from devicei to a data input for taski

R4: if taski encapsulates an objecti and
 objecti is associated with a devicei and
 devicei receives system outputs
then
 map the outputs to a data output from taski to devicei

103

